TY - CHAP
T1 - Post-Infarction Risk Prediction with Mesh Classification Networks
AU - Beetz, Marcel
AU - Acero, Jorge Corral
AU - Banerjee, Abhirup
AU - Eitel, Ingo
AU - Zacur, Ernesto
AU - Lange, Torben
AU - Stiermaier, Thomas
AU - Evertz, Ruben
AU - Backhaus, Sören J.
AU - Thiele, Holger
AU - Bueno-Orovio, Alfonso
AU - Lamata, Pablo
AU - Schuster, Andreas
AU - Grau, Vicente
N1 - Funding Information:
Acknowledgments. The authors express no conflict of interest. The work of MB is supported by the Stiftung der Deutschen Wirtschaft (Foundation of German Business). AB is a Royal Society University Research Fellow and is supported by the Royal Society (Grant No. URF\R1\221314). The work of AB and VG is supported by the British Heart Foundation (BHF) Project under Grant PG/20/21/35082. The work of VG is supported by the CompBioMed 2 Centre of Excellence in Computational Biomedicine (European Commission Horizon 2020 research and innovation programme, grant agreement No. 823712). The work of JCA is supported by the EU’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie (g.a. 764738) and the EPSRC Impact Acceleration Account (D4D00010 DF48.01), funded by UK Research and Innovation. ABO holds a BHF Intermediate Basic Science Research Fellowship (FS/17/22/32644). The work is also supported by the German Center for Cardiovascular Research, the British Heart Foundation (PG/16/75/32383), and the Wellcome Trust (209450/Z/17).
Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2022
Y1 - 2022
N2 - Post-myocardial infarction (MI) patients are at risk of major adverse cardiac events (MACE), with risk stratification primarily based on global image-based biomarkers, such as ejection fraction, in current clinical practice. However, these metrics neglect more subtle and localized shape differences in 3D cardiac anatomy and function, which limit predictive accuracy. In this work, we propose a novel geometric deep learning approach to directly predict MACE outcomes within 1 year after the infarction event from high-resolution 3D cardiac anatomy meshes. Its architecture is specifically designed for direct and efficient processing of surface mesh data with a hierarchical, multi-scale structure to enable both local and global feature learning. We evaluate the binary MACE prediction capabilities of the proposed mesh classification network on a multi-center dataset of post-MI patients. Our results show that the proposed method outperforms corresponding clinical benchmarks by ∼ 16% and ∼ 6% in terms of area under the receiver operating characteristic (AUROC) curve for 3D shape and 3D contraction inputs, respectively. Furthermore, we visually analyze both 3D cardiac shapes and 3D contraction patterns with regards to their MACE predictability and demonstrate how task-specific information learned by the network on a balanced dataset successfully generalizes to increasing levels of class imbalance. Finally, we compare our approach to both clinical and machine learning benchmarks on our original highly-imbalanced dataset of post-MI patients and find average improvements in AUROC scores of ∼ 9% and ∼ 3%, respectively.
AB - Post-myocardial infarction (MI) patients are at risk of major adverse cardiac events (MACE), with risk stratification primarily based on global image-based biomarkers, such as ejection fraction, in current clinical practice. However, these metrics neglect more subtle and localized shape differences in 3D cardiac anatomy and function, which limit predictive accuracy. In this work, we propose a novel geometric deep learning approach to directly predict MACE outcomes within 1 year after the infarction event from high-resolution 3D cardiac anatomy meshes. Its architecture is specifically designed for direct and efficient processing of surface mesh data with a hierarchical, multi-scale structure to enable both local and global feature learning. We evaluate the binary MACE prediction capabilities of the proposed mesh classification network on a multi-center dataset of post-MI patients. Our results show that the proposed method outperforms corresponding clinical benchmarks by ∼ 16% and ∼ 6% in terms of area under the receiver operating characteristic (AUROC) curve for 3D shape and 3D contraction inputs, respectively. Furthermore, we visually analyze both 3D cardiac shapes and 3D contraction patterns with regards to their MACE predictability and demonstrate how task-specific information learned by the network on a balanced dataset successfully generalizes to increasing levels of class imbalance. Finally, we compare our approach to both clinical and machine learning benchmarks on our original highly-imbalanced dataset of post-MI patients and find average improvements in AUROC scores of ∼ 9% and ∼ 3%, respectively.
KW - 3D cardiac contraction
KW - 3D cardiac shape
KW - Cardiac MRI
KW - Geometric deep learning
KW - Graph neural networks
KW - Major adverse cardiac event prediction
KW - Mesh pooling
KW - Post-myocardial infarction
UR - http://www.scopus.com/inward/record.url?scp=85148034771&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-23443-9_27
DO - 10.1007/978-3-031-23443-9_27
M3 - Conference paper
AN - SCOPUS:85148034771
SN - 9783031234422
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 291
EP - 301
BT - Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers - 13th International Workshop, STACOM 2022, Held in Conjunction with MICCAI 2022, Revised Selected Papers
A2 - Camara, Oscar
A2 - Puyol-Antón, Esther
A2 - Suinesiaputra, Avan
A2 - Young, Alistair
A2 - Qin, Chen
A2 - Sermesant, Maxime
A2 - Wang, Shuo
PB - Springer Science and Business Media Deutschland GmbH
T2 - 13th International Workshop on Statistical Atlases and Computational Models of the Heart, STACOM 2022, held in conjunction with the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
Y2 - 18 September 2022 through 18 September 2022
ER -