King's College London

Research portal

Power and sample size estimation for epigenome-wide association scans to detect differential DNA methylation

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)1429-1441
JournalInternational Journal of Epidemiology
Volume44
Issue number4
DOIs
Publication statusPublished - 13 May 2015

Bibliographical note

© The Author 2015; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

Documents

King's Authors

Abstract

BACKGROUND: Epigenome-wide association scans (EWAS) are under way for many complex human traits, but EWAS power has not been fully assessed. We investigate power of EWAS to detect differential methylation using case-control and disease-discordant monozygotic (MZ) twin designs with genome-wide DNA methylation arrays.

METHODS AND RESULTS: We performed simulations to estimate power under the case-control and discordant MZ twin EWAS study designs, under a range of epigenetic risk effect sizes and conditions. For example, to detect a 10% mean methylation difference between affected and unaffected subjects at a genome-wide significance threshold of P = 1 × 10(-6), 98 MZ twin pairs were required to reach 80% EWAS power, and 112 cases and 112 controls pairs were needed in the case-control design. We also estimated the minimum sample size required to reach 80% EWAS power under both study designs. Our analyses highlighted several factors that significantly influenced EWAS power, including sample size, epigenetic risk effect size, the variance of DNA methylation at the locus of interest and the correlation in DNA methylation patterns within the twin sample.

CONCLUSIONS: We provide power estimates for array-based DNA methylation EWAS under case-control and disease-discordant MZ twin designs, and explore multiple factors that impact on EWAS power. Our results can help guide EWAS experimental design and interpretation for future epigenetic studies.

Download statistics

No data available

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454