Precision of tissue patterning is controlled by dynamical properties of gene regulatory networks

Katherine Exelby, Edgar Herrera-Delgado, Lorena Garcia Perez, Ruben Perez-Carrasco, Andreas Sagner, Vicki Metzis, Peter Sollich, James Briscoe

Research output: Contribution to journalArticlepeer-review

34 Citations (Scopus)
134 Downloads (Pure)

Abstract

During development, gene regulatory networks allocate cell fates by partitioning tissues into spatially organised domains of gene expression. How the sharp boundaries that delineate these gene expression patterns arise, despite the stochasticity associated with gene regulation, is poorly understood. We show, in the vertebrate neural tube, using perturbations of coding and regulatory regions, that the structure of the regulatory network contributes to boundary precision. This is achieved, not by reducing noise in individual genes, but by the configuration of the network modulating the ability of stochastic fluctuations to initiate gene expression changes. We use a computational screen to identify network properties that influence boundary precision, revealing two dynamical mechanisms by which small gene circuits attenuate the effect of noise in order to increase patterning precision. These results highlight design principles of gene regulatory networks that produce precise patterns of gene expression.

Original languageEnglish
Article numberdev197566
JournalDevelopment (Cambridge, England)
Volume148
Issue number4
Early online date25 Feb 2021
DOIs
Publication statusPublished - 25 Feb 2021

Keywords

  • cis regulatory elements
  • Dynamical systems theory
  • Gene regulatory network
  • Morphogen signaling
  • Neural tube

Fingerprint

Dive into the research topics of 'Precision of tissue patterning is controlled by dynamical properties of gene regulatory networks'. Together they form a unique fingerprint.

Cite this