TY - JOUR
T1 - Predicting 1, 2 and 3 year emergent referable diabetic retinopathy and maculopathy using deep learning
AU - Nderitu, Paul
AU - Nunez do Rio, Joan M
AU - Webster, Laura
AU - Mann, Samantha
AU - Cardoso, M Jorge
AU - Modat, Marc
AU - Hopkins, David
AU - Bergeles, Christos
AU - Jackson, Timothy L
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/8/21
Y1 - 2024/8/21
N2 - BACKGROUND: Predicting diabetic retinopathy (DR) progression could enable individualised screening with prompt referral for high-risk individuals for sight-saving treatment, whilst reducing screening burden for low-risk individuals. We developed and validated deep learning systems (DLS) that predict 1, 2 and 3 year emergent referable DR and maculopathy using risk factor characteristics (tabular DLS), colour fundal photographs (image DLS) or both (multimodal DLS).METHODS: From 162,339 development-set eyes from south-east London (UK) diabetic eye screening programme (DESP), 110,837 had eligible longitudinal data, with the remaining 51,502 used for pretraining. Internal and external (Birmingham DESP, UK) test datasets included 27,996, and 6928 eyes respectively.RESULTS: Internal multimodal DLS emergent referable DR, maculopathy or either area-under-the receiver operating characteristic (AUROC) were 0.95 (95% CI: 0.92-0.98), 0.84 (0.82-0.86), 0.85 (0.83-0.87) for 1 year, 0.92 (0.87-0.96), 0.84 (0.82-0.87), 0.85 (0.82-0.87) for 2 years, and 0.85 (0.80-0.90), 0.79 (0.76-0.82), 0.79 (0.76-0.82) for 3 years. External multimodal DLS emergent referable DR, maculopathy or either AUROC were 0.93 (0.88-0.97), 0.85 (0.80-0.89), 0.85 (0.76-0.85) for 1 year, 0.93 (0.89-0.97), 0.79 (0.74-0.84), 0.80 (0.76-0.85) for 2 years, and 0.91 (0.84-0.98), 0.79 (0.74-0.83), 0.79 (0.74-0.84) for 3 years.CONCLUSIONS: Multimodal and image DLS performance is significantly better than tabular DLS at all intervals. DLS accurately predict 1, 2 and 3 year emergent referable DR and referable maculopathy using colour fundal photographs, with additional risk factor characteristics conferring improvements in prognostic performance. Proposed DLS are a step towards individualised risk-based screening, whereby AI-assistance allows high-risk individuals to be closely monitored while reducing screening burden for low-risk individuals.
AB - BACKGROUND: Predicting diabetic retinopathy (DR) progression could enable individualised screening with prompt referral for high-risk individuals for sight-saving treatment, whilst reducing screening burden for low-risk individuals. We developed and validated deep learning systems (DLS) that predict 1, 2 and 3 year emergent referable DR and maculopathy using risk factor characteristics (tabular DLS), colour fundal photographs (image DLS) or both (multimodal DLS).METHODS: From 162,339 development-set eyes from south-east London (UK) diabetic eye screening programme (DESP), 110,837 had eligible longitudinal data, with the remaining 51,502 used for pretraining. Internal and external (Birmingham DESP, UK) test datasets included 27,996, and 6928 eyes respectively.RESULTS: Internal multimodal DLS emergent referable DR, maculopathy or either area-under-the receiver operating characteristic (AUROC) were 0.95 (95% CI: 0.92-0.98), 0.84 (0.82-0.86), 0.85 (0.83-0.87) for 1 year, 0.92 (0.87-0.96), 0.84 (0.82-0.87), 0.85 (0.82-0.87) for 2 years, and 0.85 (0.80-0.90), 0.79 (0.76-0.82), 0.79 (0.76-0.82) for 3 years. External multimodal DLS emergent referable DR, maculopathy or either AUROC were 0.93 (0.88-0.97), 0.85 (0.80-0.89), 0.85 (0.76-0.85) for 1 year, 0.93 (0.89-0.97), 0.79 (0.74-0.84), 0.80 (0.76-0.85) for 2 years, and 0.91 (0.84-0.98), 0.79 (0.74-0.83), 0.79 (0.74-0.84) for 3 years.CONCLUSIONS: Multimodal and image DLS performance is significantly better than tabular DLS at all intervals. DLS accurately predict 1, 2 and 3 year emergent referable DR and referable maculopathy using colour fundal photographs, with additional risk factor characteristics conferring improvements in prognostic performance. Proposed DLS are a step towards individualised risk-based screening, whereby AI-assistance allows high-risk individuals to be closely monitored while reducing screening burden for low-risk individuals.
UR - http://www.scopus.com/inward/record.url?scp=85203699997&partnerID=8YFLogxK
U2 - 10.1038/s43856-024-00590-z
DO - 10.1038/s43856-024-00590-z
M3 - Article
C2 - 39169209
SN - 2730-664X
VL - 4
SP - 167
JO - Communications Medicine
JF - Communications Medicine
IS - 1
M1 - 167
ER -