King's College London

Research portal

Predicting causal variants affecting expression by using whole-genome sequencing and RNA-seq from multiple human tissues

Research output: Contribution to journalLetter

Andrew Anand Brown, Ana Viñuela, Olivier Delaneau, Tim D Spector, Kerrin S Small, Emmanouil T Dermitzakis

Original languageEnglish
Pages (from-to)1747-1751
JournalNature Genetics
Volume49
Issue number12
Early online date23 Oct 2017
DOIs
Publication statusPublished - 1 Dec 2017

Documents

King's Authors

Abstract

Genetic association mapping produces statistical links between phenotypes and genomic regions, but identifying causal variants remains difficult. Whole-genome sequencing (WGS) can help by providing complete knowledge of all genetic variants, but it is financially prohibitive for well-powered GWAS studies. We performed mapping of expression quantitative trait loci (eQTLs) with WGS and RNA-seq, and found that lead eQTL variants called with WGS were more likely to be causal. Through simulations, we derived properties of causal variants and used them to develop a method for identifying likely causal SNPs. We estimated that 25-70% of causal variants were located in open-chromatin regions, depending on the tissue and experiment. Finally, we identified a set of high-confidence causal variants and showed that these were more enriched in GWAS associations than other eQTLs. Of those, we found 65 associations with GWAS traits and provide examples in which genes implicated by expression are functionally validated as being relevant for complex traits.

Download statistics

No data available

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454