Probabilistic 3d surface reconstruction from sparse mri information

Katarína Tóthová*, Sarah Parisot, Matthew Lee, Esther Puyol-Antón, Andrew King, Marc Pollefeys, Ender Konukoglu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference paperpeer-review

8 Citations (Scopus)


Surface reconstruction from magnetic resonance (MR) imaging data is indispensable in medical image analysis and clinical research. A reliable and effective reconstruction tool should: be fast in prediction of accurate well localised and high resolution models, evaluate prediction uncertainty, work with as little input data as possible. Current deep learning state of the art (SOTA) 3D reconstruction methods, however, often only produce shapes of limited variability positioned in a canonical position or lack uncertainty evaluation. In this paper, we present a novel probabilistic deep learning approach for concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric uncertainty prediction. Our method is capable of reconstructing large surface meshes from three quasi-orthogonal MR imaging slices from limited training sets whilst modelling the location of each mesh vertex through a Gaussian distribution. Prior shape information is encoded using a built-in linear principal component analysis (PCA) model. Extensive experiments on cardiac MR data show that our probabilistic approach successfully assesses prediction uncertainty while at the same time qualitatively and quantitatively outperforms SOTA methods in shape prediction. Compared to SOTA, we are capable of properly localising and orientating the prediction via the use of a spatially aware neural network.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
EditorsAnne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz
PublisherSpringer Science and Business Media Deutschland GmbH
Number of pages11
ISBN (Print)9783030597092
Publication statusPublished - 2020
Event23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, Peru
Duration: 4 Oct 20208 Oct 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12261 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Conference23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020


  • 3D reconstruction
  • Deep learning
  • Shape modelling
  • Uncertainty quantification


Dive into the research topics of 'Probabilistic 3d surface reconstruction from sparse mri information'. Together they form a unique fingerprint.

Cite this