Abstract
Objective: To assess the potential of registered volumetric MRI in measuring rates of atrophy in MS.
Background: Pathologic and imaging studies suggest that the development of permanent neurologic impairment in MS is associated with progressive brain and spinal cord atrophy. Atrophy has been suggested as a potential marker of disease progression. Conventional atrophy measurements requiring manual outlining are time-consuming and subject to reproducibility problems. Registration of serial MRI may offer a useful alternative in that cerebral losses may be measured directly from automated subtraction of brain volumes.
Methods: Twenty-six patients with MS and 26 age- and gender-matched controls had two volumetric brain MR studies 1 year apart. Baseline brain and ventricular volumes were measured using semiautomated techniques, and follow-up scans were registered to baseline. Rates of cerebral atrophy were calculated directly from the registered scans.
Results: Baseline brain volumes in the MS group were smaller (mean difference 78 mL [95% CI 13 to 143; p = 0.02]) and ventricular volumes greater (mean difference 12 mL [95% CI 6 to 18; p < 0.001]) than controls. The rate of cerebral atrophy in the MS group (0.8% per year) was over twice that of controls (0.3%), and the rate of ventricular enlargement was five times greater than the controls (1.6 versus 0.3 mL/year).
Conclusion: Progressive cerebral atrophy is an important feature of MS. Registration-based measurements are sensitive and reproducible, allowing progressive atrophy to be detected within 1 year and may have potential as a marker of progression in monitoring therapeutic trials.
Background: Pathologic and imaging studies suggest that the development of permanent neurologic impairment in MS is associated with progressive brain and spinal cord atrophy. Atrophy has been suggested as a potential marker of disease progression. Conventional atrophy measurements requiring manual outlining are time-consuming and subject to reproducibility problems. Registration of serial MRI may offer a useful alternative in that cerebral losses may be measured directly from automated subtraction of brain volumes.
Methods: Twenty-six patients with MS and 26 age- and gender-matched controls had two volumetric brain MR studies 1 year apart. Baseline brain and ventricular volumes were measured using semiautomated techniques, and follow-up scans were registered to baseline. Rates of cerebral atrophy were calculated directly from the registered scans.
Results: Baseline brain volumes in the MS group were smaller (mean difference 78 mL [95% CI 13 to 143; p = 0.02]) and ventricular volumes greater (mean difference 12 mL [95% CI 6 to 18; p < 0.001]) than controls. The rate of cerebral atrophy in the MS group (0.8% per year) was over twice that of controls (0.3%), and the rate of ventricular enlargement was five times greater than the controls (1.6 versus 0.3 mL/year).
Conclusion: Progressive cerebral atrophy is an important feature of MS. Registration-based measurements are sensitive and reproducible, allowing progressive atrophy to be detected within 1 year and may have potential as a marker of progression in monitoring therapeutic trials.
Original language | English |
---|---|
Pages (from-to) | 807-812 |
Number of pages | 6 |
Journal | Neurology |
Volume | 54 |
Issue number | 4 |
DOIs | |
Publication status | Published - 22 Feb 2000 |