Research output: Contribution to journal › Article › peer-review
Rebecca L. Charles, Olena Rudyk, Oleksandra Prysyazhna, Alisa Kamynina, Jun Yang, Christophe Morisseau, Bruce D. Hammock, Bruce A. Freeman, Philip Eaton
Original language | English |
---|---|
Pages (from-to) | 8167-8172 |
Number of pages | 6 |
Journal | Proceedings of the National Academy of Sciences of the United States of America |
Volume | 111 |
Issue number | 22 |
Early online date | 19 May 2014 |
DOIs | |
Accepted/In press | 24 Apr 2014 |
E-pub ahead of print | 19 May 2014 |
Published | 3 Jun 2014 |
Soluble epoxide hydrolase (sEH) is inhibited by electrophilic lipids by their adduction to Cys521 proximal to its catalytic center. This inhibition prevents hydrolysis of the enzymes' epoxyeicosatrienoic acid (EET) substrates, so they accumulate inducing vasodilation to lower blood pressure (BP). We generated a Cys521Ser sEH redox-dead knockin (KI) mouse model that was resistant to this mode of inhibition. The electrophilic lipid 10-nitro-oleic acid (NO2-OA) inhibited hydrolase activity and also lowered BP in an angiotensin II-induced hypertension model in wild-type (WT) but not KI mice. Furthermore, EET/dihydroxy-epoxyeicosatrienoic acid isomer ratios were elevated in plasma from WT but not KI mice following NO2-OA treatment, consistent with the redox-dead mutant being resistant to inhibition by lipid electrophiles. sEH was inhibited in WT mice fed linoleic acid and nitrite, key constituents of the Mediterranean diet that elevates electrophilic nitro fatty acid levels, whereas KIs were unaffected. These observations reveal that lipid electrophiles such as NO2-OA mediate antihypertensive signaling actions by inhibiting sEH and suggest a mechanism accounting for protection from hypertension afforded by the Mediterranean diet.
King's College London - Homepage
© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454