King's College London

Research portal

Protein synthesis is associated with high-speed dynamics and broad-band stability of functional hubs in the brain

Research output: Contribution to journalArticle

Peter J. Hellyer, Alberto Pellizzon, Erica Barry, Mattia Veronese, Gaia Rizzo, Matteo Tonietto, Manuel Schütze, Michael Brammer, Marco Aurélio Romano-Silva, Alessandra Bertoldo, Federico E. Turkheimer

Original languageEnglish
Pages (from-to)209–216
JournalNeuroImage
Volume155
Early online date2 May 2017
DOIs
Publication statusPublished - 15 Jul 2017

Documents

King's Authors

Abstract

L-[1-11C]leucine PET can be used to measure in vivo protein synthesis in the brain. However, the relationship between regional protein synthesis and on-going neural dynamics is unclear. We use a graph theoretical approach to examine the relationship between cerebral protein synthesis (rCPS) and both static and dynamical measures of functional connectivity (measured using resting state functional MRI, R-fMRI). Our graph theoretical analysis demonstrates a significant positive relationship between protein turnover and static measures of functional connectivity. We compared these results to simple measures of metabolism in the cortex using [18F]FDG PET). Whilst some relationship between [18F]FDG binding and graph theoretical measures was present, there remained a significant relationship between protein turnover and graph theoretical measures, which were more robustly explained by L-[1-11C]Leucine than [18F]FDG PET. This relationship was stronger in dynamics at a faster temporal resolution relative to dynamics measured over a longer epoch. Using a Dynamic connectivity approach, we also demonstrate that broad-band dynamic measures of Functional Connectivity (FC), are inversely correlated with protein turnover, suggesting greater stability of FC in highly interconnected hub regions is supported by protein synthesis. Overall, we demonstrate that cerebral protein synthesis has a strong relationship independent of tissue metabolism to neural dynamics at the macroscopic scale.

Download statistics

No data available

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454