King's College London

Research portal

Pulmonary Artery Pressures in School-Age Children Born Prematurely

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)42–49.e3
JournalJournal of Pediatrics
Volume191
Early online date21 Nov 2017
DOIs
StatePublished - Dec 2017

King's Authors

Abstract

Objectives To test the hypothesis that pulmonary artery pressures were higher in school aged children born extremely premature than those born at term. We also wanted to assess whether pulmonary artery pressures differed between children born prematurely with or without bronchopulmonary dysplasia (BPD) or between those randomized in the neonatal period to different ventilation modes.Study designTransthoracic echocardiography was performed on 193 children born extremely premature (106 had BPD) and 110 children born at term when they were 11-14 years of age. Ninety-nine children born extremely premature had been supported by high-frequency oscillation and 94 by conventional ventilation. Tricuspid regurgitation was assessed in the apical 4-chamber and modified parasternal long-axis views. Continuous-wave Doppler of the peak regurgitant jet velocity was used to estimate the right-ventricular-to-right-atrial systolic pressure gradient.ResultsTricuspid regurgitation was measurable in 71% (137/193) of the children born preterm and 75% (83/110) of the children born at term (P .23). The children born prematurely compared with the children born at term had a greater peak tricuspid regurgitation velocity (2.21 vs 1.95 m/s, P < .001) and the children born prematurely who had BPD vs those without BPD had a greater peak tricuspid regurgitation velocity (P = .023). There were no significant differences in pulmonary artery pressures according to neonatal ventilation mode.ConclusionsPulmonary artery pressures were estimated to be greater in 11- to 14-year-old children born extremely prematurely compared with those born at term and in those born prematurely who developed BPD compared with those who did not but did not differ significantly by neonatal ventilation mode.

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454