PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI

Amir Alansary, Martin Rajchl, Steven G. McDonagh, Maria Murgasova, Mellisa Damodaram, David F.A. Lloyd, Alice Davidson, Mary Rutherford, Joseph V. Hajnal, Daniel Rueckert, Bernhard Kainz

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)
267 Downloads (Pure)

Abstract

In this paper we present a novel method for the correction of motion artifacts that are present in fetal Magnetic Resonance Imaging (MRI) scans of the whole uterus. Contrary to current slice-to-volume registration (SVR) methods, requiring an inflexible anatomical enclosure of a single investigated organ, the proposed patch-to-volume reconstruction (PVR) approach is able to reconstruct a large field of view of non-rigidly deforming structures. It relaxes rigid motion assumptions by introducing a specific amount of redundant information that is exploited with parallelized patch-wise optimization, super-resolution, and automatic outlier rejection. We further describe and provide an efficient parallel implementation of PVR allowing its execution within reasonable time on commercially available graphics processing units (GPU), enabling its use in the clinical practice. We evaluate PVR’s computational overhead compared to standard methods and observe improved reconstruction accuracy in the presence of affine motion artifacts compared to conventional SVR in synthetic experiments. Furthermore, we have evaluated our method qualitatively and quantitatively on real fetal MRI data subject to maternal breathing and sudden fetal movements. We evaluate peak-signal-to-noise ratio (PSNR), structural similarity index (SSIM), and cross correlation (CC) with respect to the originally acquired data and provide a method for visual inspection of reconstruction uncertainty. We further evaluate the distance error for selected anatomical landmarks in the fetal head, as well as calculating the mean and maximum displacements resulting from automatic non-rigid registration to a motion-free ground truth image. These experiments demonstrate a successful application of PVR motion compensation to the whole fetal body, uterus and placenta.

Original languageEnglish
JournalIEEE Transactions on Medical Imaging
Early online date1 Sept 2017
DOIs
Publication statusE-pub ahead of print - 1 Sept 2017

Keywords

  • Correlation
  • Fetal Magnetic Resonance Imaging
  • GPU acceleration
  • Image reconstruction
  • Image Reconstruction
  • Image resolution
  • Magnetic resonance imaging
  • Motion Correction
  • Super-Resolution
  • Three-dimensional displays
  • Transmission line matrix methods
  • Two dimensional displays

Fingerprint

Dive into the research topics of 'PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI'. Together they form a unique fingerprint.

Cite this