Abstract
Using the methods of the recently proposed Quantum Spectral Curve (QSC) originating from integrability of N=4 Super-Yang-Mills theory we analytically continue the scaling dimensions of twist-2 operators and reproduce the so-called pomeron eigenvalue of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation. Furthermore, we recovered the Faddeev-Korchemsky Baxter equation for Lipatov’s spin chain and also found its general-ization for the next-to-leading order in the BFKL scaling. Our results provide a non-trivial test of QSC describing the exact spectrum in planar N=4 SYM at infinitely many loops for a highly nontrivial non-BPS quantity and also opens a way for a systematic expansion in the BFKL regime.
Original language | English |
---|---|
Article number | 164 |
Journal | JHEP |
Volume | 07 |
Early online date | 30 Jul 2015 |
DOIs | |
Publication status | E-pub ahead of print - 30 Jul 2015 |