TY - JOUR
T1 - Quantum Generalized Hydrodynamics
AU - Ruggiero, Paola
AU - Calabrese, Pasquale
AU - Doyon, Benjamin
AU - Dubail, Jérôme
PY - 2020/4/9
Y1 - 2020/4/9
N2 - Physical systems made of many interacting quantum particles can often be described by Euler hydrodynamic equations in the limit of long wavelengths and low frequencies. Recently such a classical hydrodynamic framework, now dubbed generalized hydrodynamics (GHD), was found for quantum integrable models in one spatial dimension. Despite its great predictive power, GHD, like any Euler hydrodynamic equation, misses important quantum effects, such as quantum fluctuations leading to nonzero equal-time correlations between fluid cells at different positions. Focusing on the one-dimensional gas of bosons with delta repulsion, and on states of zero entropy, for which quantum fluctuations are larger, we reconstruct such quantum effects by quantizing GHD. The resulting theory of quantum GHD can be viewed as a multicomponent Luttinger liquid theory, with a small set of effective parameters that are fixed by the thermodynamic Bethe ansatz. It describes quantum fluctuations of truly nonequilibrium systems where conventional Luttinger liquid theory fails.
AB - Physical systems made of many interacting quantum particles can often be described by Euler hydrodynamic equations in the limit of long wavelengths and low frequencies. Recently such a classical hydrodynamic framework, now dubbed generalized hydrodynamics (GHD), was found for quantum integrable models in one spatial dimension. Despite its great predictive power, GHD, like any Euler hydrodynamic equation, misses important quantum effects, such as quantum fluctuations leading to nonzero equal-time correlations between fluid cells at different positions. Focusing on the one-dimensional gas of bosons with delta repulsion, and on states of zero entropy, for which quantum fluctuations are larger, we reconstruct such quantum effects by quantizing GHD. The resulting theory of quantum GHD can be viewed as a multicomponent Luttinger liquid theory, with a small set of effective parameters that are fixed by the thermodynamic Bethe ansatz. It describes quantum fluctuations of truly nonequilibrium systems where conventional Luttinger liquid theory fails.
UR - http://www.scopus.com/inward/record.url?scp=85084107416&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.124.140603
DO - 10.1103/PhysRevLett.124.140603
M3 - Article
C2 - 32338954
AN - SCOPUS:85084107416
SN - 0031-9007
VL - 124
JO - Physical Review Letters
JF - Physical Review Letters
IS - 14
M1 - 140603
ER -