Abstract
Abstract
Imaging-guided photothermal therapy (PTT) has promising application for treating tumors. Nevertheless, so far imaging-guided photothermal drug-delivery systems have been developed with limited success for tumor chemo-photothermal therapy. In this study, as the proof-of-concept, a stimuli-responsive tumor-targeting rapamycin/DiR loaded lipid-polyaniline nanoparticle (RDLPNP) for dual-modal imaging-guided enhanced PTT efficacy is reported for the first time. In this system, polyaniline (PANI) with π-π electronic conjugated system and effective photothermal efficiency is choosed as the appropriate model receptor of fluorescence resonance energy transfer (FRET), and loaded cyanine probe (e.g., 1,1-dioctadecyl-3,3,3,3-tetramethylindotri-carbocyanine iodide, DiR) acts as the donor of near-infrared fluorescence (NIRF). In addition, rapamycin (RAPA), which is used as the antiangiogenesis chemotherapeutic drug, can cutdown the tumor vessels and delay tumor growth obviously. After intravenous treatment of RDLPNPs into Hela tumor bearing mice, fluorescent (from DiR) and enhanced photoacoustic (from DLPNPs) signals were found in tumor site over time, which reached to peak at the 6 h time point. After irradiating with an NIR laser, a good anti-tumor effect was observed owing to the enhanced photothermal and antiangiogenic effect of RDLPNPs. These results show that the multifunctional nanoparticle can be used as a promising imaging-guided photothermal drug delivery nanoplatform for cancer therapy.
Imaging-guided photothermal therapy (PTT) has promising application for treating tumors. Nevertheless, so far imaging-guided photothermal drug-delivery systems have been developed with limited success for tumor chemo-photothermal therapy. In this study, as the proof-of-concept, a stimuli-responsive tumor-targeting rapamycin/DiR loaded lipid-polyaniline nanoparticle (RDLPNP) for dual-modal imaging-guided enhanced PTT efficacy is reported for the first time. In this system, polyaniline (PANI) with π-π electronic conjugated system and effective photothermal efficiency is choosed as the appropriate model receptor of fluorescence resonance energy transfer (FRET), and loaded cyanine probe (e.g., 1,1-dioctadecyl-3,3,3,3-tetramethylindotri-carbocyanine iodide, DiR) acts as the donor of near-infrared fluorescence (NIRF). In addition, rapamycin (RAPA), which is used as the antiangiogenesis chemotherapeutic drug, can cutdown the tumor vessels and delay tumor growth obviously. After intravenous treatment of RDLPNPs into Hela tumor bearing mice, fluorescent (from DiR) and enhanced photoacoustic (from DLPNPs) signals were found in tumor site over time, which reached to peak at the 6 h time point. After irradiating with an NIR laser, a good anti-tumor effect was observed owing to the enhanced photothermal and antiangiogenic effect of RDLPNPs. These results show that the multifunctional nanoparticle can be used as a promising imaging-guided photothermal drug delivery nanoplatform for cancer therapy.
Original language | English |
---|---|
Pages (from-to) | 23-34 |
Journal | JOURNAL OF CONTROLLED RELEASE |
Volume | 237 |
Early online date | 5 Jul 2016 |
DOIs | |
Publication status | Published - 10 Sept 2016 |
Keywords
- Rapamycin
- Lipid-polyaniline nanoparticles
- Enhanced photothermal therapy
- Antiangiogenesis
- Imaging-guided therapy