Reactions of Sn-3.5Ag-Based Solders Containing Zn and Al Additions on Cu and Ni(P) Substrates

Research output: Contribution to journalArticlepeer-review

50 Citations (Scopus)

Abstract

In this study we consider the effect of separately adding 0.5 wt.% to 1.5 wt.% Zn or 0.5 wt.% to 2 wt.% Al to the eutectic Sn-3.5Ag lead-free solder alloy to limit intermetallic compound (IMC) growth between a limited volume of solder and the contact metallization. The resultant solder joint microstructure after reflow and high-temperature storage at 150°C for up to 1000 h was investigated. Experimental results confirmed that the addition of 1.0 wt.% to 1.5 wt.% Zn leads to the formation of Cu-Zn on the Cu substrate, followed by massive spalling of the Cu-Zn IMC from the Cu substrate. Growth of the Cu6Sn5 IMC layer is significantly suppressed. The addition of 0.5 wt.% Zn does not result in the formation of a Cu-Zn layer. On Ni substrates, the Zn segregates to the Ni3Sn4 IMC layer and suppresses its growth. The addition of Al to Sn-3.5Ag solder results in the formation of Al-Cu IMC particles in the solder matrix when reflowed on the Cu substrate, while on Ni substrates Al-Ni IMCs spall into the solder matrix. The formation of a continuous barrier layer in the presence of Al and Zn, as reported when using solder baths, is not observed because of the limited solder volumes used, which are more typical of reflow soldering.
Original languageEnglish
Pages (from-to)2720 - 2731
Number of pages12
JournalJOURNAL OF ELECTRONIC MATERIALS
Volume39
Issue number12
DOIs
Publication statusPublished - Dec 2010
Event139th TMS Annual Meeting and Exhibition on Pb-Free Solders and Emerging Interconnect and Packaging Technologies - Seattle, WA
Duration: 14 Feb 201018 Feb 2010

Fingerprint

Dive into the research topics of 'Reactions of Sn-3.5Ag-Based Solders Containing Zn and Al Additions on Cu and Ni(P) Substrates'. Together they form a unique fingerprint.

Cite this