Real-Time Respiratory Motion Correction for Cardiac Electrophysiology Procedures Using Image-Based Coronary Sinus Catheter Tracking

Research output: Chapter in Book/Report/Conference proceedingConference paper

42 Citations (Scopus)

Abstract

X-ray fluoroscopically guided cardiac electrophysiological procedures are routinely carried out for diagnosis and treatment of cardiac arrhythmias. X-ray images have poor soft tissue contrast and, for this reason, overlay of static 3D roadmaps derived from pre-procedural volumetric data can be used to add anatomical information. However, the registration between the 3D roadmap and the 2D X-ray data can be compromised by patient respiratory motion. We propose a novel method to correct for respiratory motion using real-time image-based coronary sinus (CS) catheter tracking. The first step of the proposed technique is to use a blob detection method to detect all possible catheter electrodes in the Xray data. We then compute a cost function to select one CS catheter from all catheter-like objects. For correcting respiratory motion, we apply a low pass filter to the 2D motion of the CS catheter and update the 3D roadmap using this filtered motion. We tested our CS catheter tracking method on 1048 fluoroscopy frames from 15 patients and achieved a success rate of 99.3% and an average 2D tracking error of 0.4 mm +/- 0.2 mm. We also validated our respiratory motion correction strategy by computing the 2D target registration error (TRE) at the pulmonary veins and achieved a TRE of 1.6 mm +/- 0.9 mm.
Original languageEnglish
Title of host publicationLecture Notes in Computer Science
Place of PublicationBERLIN
PublisherSpringer
Pages391 - 399
Number of pages9
Volume6361 LNCS
EditionPART 1
ISBN (Print)978-3-642-15704-2
Publication statusPublished - 2010
Event13th International Conference on Medical Image Computing and Computer-Assisted Intervention - Beijing, PEOPLES R CHINA
Duration: 20 Sept 201024 Sept 2010

Publication series

NameMEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2010, PT I

Conference

Conference13th International Conference on Medical Image Computing and Computer-Assisted Intervention
CityBeijing, PEOPLES R CHINA
Period20/09/201024/09/2010

Fingerprint

Dive into the research topics of 'Real-Time Respiratory Motion Correction for Cardiac Electrophysiology Procedures Using Image-Based Coronary Sinus Catheter Tracking'. Together they form a unique fingerprint.

Cite this