TY - JOUR
T1 - Reduced nuclear protein 1 expression improves insulin sensitivity and protects against diet-induced glucose intolerance through up-regulation of heat shock protein 70
AU - Barbosa Sampaio, Helena Barbosa
AU - Drynda, Robert
AU - Liu, Bo
AU - Rodriguez de Ledesma Vega, Ana Maria
AU - Malicet, C.
AU - Iovanna, J. L.
AU - Jones, Peter
AU - Muller, D. S.
AU - Persaud, Shanta
PY - 2015/5/1
Y1 - 2015/5/1
N2 - We recently reported that deletion of the stress-regulated nuclear protein 1 (Nupr1) protected against obesity-associated metabolic alterations due to increased beta cell mass, but complete Nupr1 ablation was not advantageous since it led to insulin resistance on a normal diet. The current study used Nupr1 haplodeficient mice to investigate whether a partial reduction in Nupr1 expression conferred beneficial effects on glucose homeostasis. Islet number, morphology and area, assessed by immunofluorescence and morphometric analyses, were not altered in Nupr1 haplodeficient mice under normal diet conditions and nor was beta cell BrdU incorporation. Glucose and insulin tolerance tests indicated that there were no significant changes in in vivo insulin secretion and glucose clearance in Nupr1 haplodeficient mice, and beta cell function in vitro was normal. However, reduced Nupr1 expression decreased visceral fat deposition and significantly increased insulin sensitivity in vivo. In contrast to wild type animals, high fat diet-fed Nupr1 haplodeficient mice were not hyperinsulinaemic or glucose intolerant, and their sustained insulin sensitivity was demonstrated by appropriate insulin-induced Akt phosphorylation, as determined by Western blotting. At the molecular level, measurements of gene expression levels and promoter activities identified Nupr1-dependent inhibition of heat shock factor-1-induced heat shock protein 70 (Hsp70) expression as a mechanism through which Nupr1 regulates insulin sensitivity. We have shown for the first time that Nupr1 plays a central role in inhibiting Hsp70 expression in tissues regulating glucose homeostasis, and reductions in Nupr1 expression could be used to protect against the metabolic defects associated with obesity-induced insulin resistance.
AB - We recently reported that deletion of the stress-regulated nuclear protein 1 (Nupr1) protected against obesity-associated metabolic alterations due to increased beta cell mass, but complete Nupr1 ablation was not advantageous since it led to insulin resistance on a normal diet. The current study used Nupr1 haplodeficient mice to investigate whether a partial reduction in Nupr1 expression conferred beneficial effects on glucose homeostasis. Islet number, morphology and area, assessed by immunofluorescence and morphometric analyses, were not altered in Nupr1 haplodeficient mice under normal diet conditions and nor was beta cell BrdU incorporation. Glucose and insulin tolerance tests indicated that there were no significant changes in in vivo insulin secretion and glucose clearance in Nupr1 haplodeficient mice, and beta cell function in vitro was normal. However, reduced Nupr1 expression decreased visceral fat deposition and significantly increased insulin sensitivity in vivo. In contrast to wild type animals, high fat diet-fed Nupr1 haplodeficient mice were not hyperinsulinaemic or glucose intolerant, and their sustained insulin sensitivity was demonstrated by appropriate insulin-induced Akt phosphorylation, as determined by Western blotting. At the molecular level, measurements of gene expression levels and promoter activities identified Nupr1-dependent inhibition of heat shock factor-1-induced heat shock protein 70 (Hsp70) expression as a mechanism through which Nupr1 regulates insulin sensitivity. We have shown for the first time that Nupr1 plays a central role in inhibiting Hsp70 expression in tissues regulating glucose homeostasis, and reductions in Nupr1 expression could be used to protect against the metabolic defects associated with obesity-induced insulin resistance.
KW - Glucose homeostasis
KW - Heat shock protein
KW - High fat diet
KW - Insulin resistance
KW - Islets of Langerhans
UR - http://www.scopus.com/inward/record.url?scp=84922738759&partnerID=8YFLogxK
U2 - 10.1016/j.bbadis.2015.01.013
DO - 10.1016/j.bbadis.2015.01.013
M3 - Article
AN - SCOPUS:84922738759
SN - 0925-4439
VL - 1852
SP - 962
EP - 969
JO - BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE
JF - BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE
IS - 5
ER -