Abstract
Diacylglycerol lipase alpha (DAGLα) generates the endocannabinoid (eCB) 2- arachidonylglycerol (2-AG) that regulates the proliferation and differentiation of neural stem cells and serves as a retrograde signaling lipid at synapses. Nothing is known about the dynamics of DAGLα expression in cells and this is important as it will govern where 2-AG can be made and released. We have developed a new construct to label DAGLα at the surface of live cells and follow its trafficking. In hippocampal neurons a cell surface pool of DAGLα co-localizes with Homer, a postsynaptic density marker. This surface pool of DAGLα is dynamic, undergoing endocytosis and recycling back to the postsynaptic membrane. A similar cycling is seen in COS-7 cells with the internalized DAGLα initially transported to EEA1 and Rab5-positive early endosomes via a clathrin-independent pathway before being transported back to the cell surface. The internalized DAGLα is present on reticular structures that co-localize with microtubules. Importantly, DAGLα cycling is a regulated process as inhibiting PKC results in a significant reduction in endocytosis. This is the first description of DAGLα cycling between the cell surface and an intracellular endosomal compartment in a manner that can regulate the level of the enzyme at the cell surface.
Original language | English |
---|---|
Number of pages | 76 |
Journal | Molecular and Cellular Neuroscience |
Early online date | 3 Sept 2016 |
DOIs | |
Publication status | Published - 1 Oct 2016 |