Regulating neural proliferation in the Drosophila CNS

Rita Sousa-Nunes, Louise Y. Cheng, Alex P. Gould

Research output: Contribution to journalArticlepeer-review

86 Citations (Scopus)

Abstract

Neural stem and progenitor cells generate the central nervous system (CNS) in organisms as diverse as insects and mammals. In Drosophila, multipotent asymmetrically dividing progenitors called neuroblasts produce neurons and glia throughout the developing CNS. Nevertheless, the time-windows of mitotic activity, the division modes, the termination mechanisms and the lineage sizes of individual neuroblasts all vary considerably from region-to-region. Recent studies shed light on some of the mechanisms underlying this neuroblast diversity and, in particular, how proliferation is boosted in two brain regions. In the central brain, some specialised neuroblasts generate intermediate neural progenitors that can each divide multiple times, thus increasing overall lineage size. In the optic lobe, an alternative expansion strategy involves symmetrically dividing neuroepithelial cells generating large numbers of asymmetrically dividing neuroblasts. Evidence is also emerging for a cell-intrinsic timer that alters the properties of each neuroblast with increasing developmental age. The core mechanism corresponds to a series of transcription factors that coordinates temporal changes in neuronal/glial identity with transitions in neuroblast cell-cycle speed, entry into quiescence and, ultimately, with termination.

Original languageEnglish
Pages (from-to)50-57
Number of pages8
JournalCURRENT OPINION IN NEUROBIOLOGY
Volume20
Issue number1
DOIs
Publication statusPublished - Feb 2010

Fingerprint

Dive into the research topics of 'Regulating neural proliferation in the Drosophila CNS'. Together they form a unique fingerprint.

Cite this