TY - CHAP
T1 - Resource Allocation for Wireless Communications with Distributed Reconfigurable Intelligent Surfaces
AU - Yang, Zhaohui
AU - Chen, Mingzhe
AU - Saad, Walid
AU - Xu, Wei
AU - Shikh-Bahaei, Mohammad
AU - Vincent Poor, H.
AU - Cui, Shuguang
N1 - Publisher Copyright:
© 2020 IEEE.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2020/12
Y1 - 2020/12
N2 - This paper investigates the problem of resource allocation for a wireless communication network with distributed reconfigurable intelligent surfaces (RISs). In this network, multiple RISs are spatially distributed to serve wireless users and the energy efficiency of the network is maximized by dynamically controlling the on-off status of each RIS as well as optimizing the reflection coefficient matrix of the RISs. This problem is posed as a joint optimization problem of transmit power and RIS control, whose goal is to maximize the energy efficiency under minimum rate constraints of the users. To solve this problem, an alternating algorithm is proposed by solving two sub-problems iteratively. The phase optimization sub-problem is solved by using a successive convex approximation method, which admits a closed-form solution at each step. Moreover, the RIS on-off optimization sub-problem is solved by using the dual method. Simulation results show that the proposed scheme achieves up to 27% and 68% gains in terms of the energy efficiency compared to the conventional RIS scheme and amplify-and-forward relay scheme, respectively.
AB - This paper investigates the problem of resource allocation for a wireless communication network with distributed reconfigurable intelligent surfaces (RISs). In this network, multiple RISs are spatially distributed to serve wireless users and the energy efficiency of the network is maximized by dynamically controlling the on-off status of each RIS as well as optimizing the reflection coefficient matrix of the RISs. This problem is posed as a joint optimization problem of transmit power and RIS control, whose goal is to maximize the energy efficiency under minimum rate constraints of the users. To solve this problem, an alternating algorithm is proposed by solving two sub-problems iteratively. The phase optimization sub-problem is solved by using a successive convex approximation method, which admits a closed-form solution at each step. Moreover, the RIS on-off optimization sub-problem is solved by using the dual method. Simulation results show that the proposed scheme achieves up to 27% and 68% gains in terms of the energy efficiency compared to the conventional RIS scheme and amplify-and-forward relay scheme, respectively.
UR - http://www.scopus.com/inward/record.url?scp=85100440830&partnerID=8YFLogxK
U2 - 10.1109/GLOBECOM42002.2020.9322421
DO - 10.1109/GLOBECOM42002.2020.9322421
M3 - Conference paper
AN - SCOPUS:85100440830
T3 - 2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings
BT - 2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 IEEE Global Communications Conference, GLOBECOM 2020
Y2 - 7 December 2020 through 11 December 2020
ER -