King's College London

Research portal

Restoration of Hypoglycemia Awareness Alters Brain Activity in Type 1 Diabetes

Research output: Contribution to journalArticlepeer-review

Original languageEnglish
Pages (from-to)533-540
Number of pages8
JournalDiabetes Care
Volume44
Issue number2
DOIs
Published1 Feb 2021

Bibliographical note

Publisher Copyright: © 2020 by the American Diabetes Association. Copyright: This record is sourced from MEDLINE/PubMed, a database of the U.S. National Library of Medicine

King's Authors

Abstract

OBJECTIVE: Impaired awareness of hypoglycemia (IAH) in type 1 diabetes (T1D) is a major risk factor for severe hypoglycemia (SH) and is associated with atypical responses to hypoglycemia in brain regions involved in arousal, decision making, and memory. Whether restoration of hypoglycemia awareness alters these responses is unknown. We sought to investigate the impact of awareness restoration on brain responses to hypoglycemia. RESEARCH DESIGN AND METHODS: Twelve adults with T1D and IAH underwent pseudocontinuous arterial spin labeling functional MRI during a hypoglycemic clamp (5-2.6 mmol/L) before and after a hypoglycemia avoidance program of structured education (Dose Adjustment for Normal Eating), specialist support, and sensor-augmented pump therapy (Medtronic MiniMed 640G). Hypoglycemic cerebral blood flow (CBF) responses were compared pre- and postintervention using predefined region-of-interest analysis of the thalamus, anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and hippocampus. RESULTS: Postintervention, Gold and Clarke scores fell (6.0 ± 1.0 to 4.0 ± 1.6, P = 0.0002, and 5.7 ± 1.7 to 3.4 ± 1.8, P = 0.0008, respectively), SH rates reduced (1.5 ± 2 to 0.3 ± 0.5 episodes per year, P = 0.03), hypoglycemic symptom scores increased (18.8 ± 6.3 to 27.3 ± 12.7, P = 0.02), and epinephrine responses did not change (P = 0.2). Postintervention, hypoglycemia induced greater increases in ACC CBF (P = 0.01, peak voxel coordinates [6, 40, -2]), while thalamic and OFC activity did not change. CONCLUSIONS: Increased blood flow is seen within brain pathways involved in internal self-awareness and decision making (ACC) after restoration of hypoglycemia awareness, suggesting partial recovery of brain responses lost in IAH. Resistance of frontothalamic networks, involved in arousal and emotion processing, may explain why not all individuals with IAH achieve awareness restoration with education and technology alone.

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454