Restored river-floodplain connectivity promotes woody plant establishment

S Fischer, J Greet, C Walsh, Jane Catford

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Riparian forest ecosystems are declining globally. Many floodplains no longer flood and thus cease to satisfy the hydrologic requirements for riparian tree maintenance and regeneration. To promote woody riparian plant recruitment where flood regimes have been altered by flow regulation, effective approaches to restoration need to be developed. We implemented a landscape-scale experiment in a remnant, temperate floodplain forest. By constructing two weirs within channelized reaches of a stream, we redirected flows into networks of historic distributary channels, which facilitated widespread floodplain inundation. Using a control-reference-impact study design, we assessed the establishment and growth of planted seedlings of three woody species (Eucalyptus camphora, Leptospermum lanigerum and Melaleuca squarrosa) over 13 months in response to flooding achieved by floodplain reconnection. Planted seedlings had higher height and diameter growth rates at both induced (19–29 cm, 1 mm) and naturally flooded (34–44 cm, 3–5 mm) than at non-flooded (4–10 cm, −5 to −3 mm) sites. However, survival rates and temporal growth patterns differed between species according to variation in flood duration and soil moisture, illustrating the different hydrological requirements of the coexisting species. This highlights that variable flooding and drying patterns are essential to create recruitment niches for different riparian plant species and shows the importance of river-floodplain connectivity for providing adequate flooding regimes. Our study demonstrates the suitability of two complementary restoration approaches – restoring hydrology and active revegetation – for promoting the regeneration of riparian forests.

Original languageEnglish
Article number119264
JournalFOREST ECOLOGY AND MANAGEMENT
Volume493
DOIs
Publication statusPublished - 1 Aug 2021

Fingerprint

Dive into the research topics of 'Restored river-floodplain connectivity promotes woody plant establishment'. Together they form a unique fingerprint.

Cite this