RevOnt: Reverse Engineering of Competency Questions from Knowledge Graphs via Language Models

Research output: Contribution to journalArticlepeer-review

139 Downloads (Pure)

Abstract

The process of developing ontologies -- a formal, explicit specification of a shared conceptualisation -- is addressed by well-known methodologies.
As for any engineering development, its fundamental basis is the collection of requirements, which includes the elicitation of competency questions. Competency questions are defined through interacting with domain and application experts or by investigating existing datasets that may be used to populate the ontology i.e. its knowledge graph. The rise in popularity and accessibility of knowledge graphs provides an opportunity to support this phase with automatic tools. In this work, we explore the possibility of extracting competency questions from a knowledge graph. This reverses the traditional workflow in which knowledge graphs are built from ontologies, which in turn are engineered from competency questions. We describe in detail RevOnt, an approach that extracts and abstracts triples from a knowledge graph, generates questions based on triple verbalisations, and filters the resulting questions to yield a meaningful set of competency questions; the WDV dataset. This approach is implemented utilising the Wikidata knowledge graph as a use case, and contributes a set of core competency questions from 20 domains present in the WDV dataset. To evaluate RevOnt, we contribute a new dataset of manually-annotated high-quality competency questions, and compare the extracted competency questions by calculating their BLEU score against the human references. The results for the abstraction and question generation components of the approach show good to high quality. Meanwhile, the accuracy of the filtering component is above 86\%, which is comparable to the state-of-the-art classifications.
Original languageEnglish
JournalJournal of Web Semantics
Publication statusPublished - 6 May 2024

Fingerprint

Dive into the research topics of 'RevOnt: Reverse Engineering of Competency Questions from Knowledge Graphs via Language Models'. Together they form a unique fingerprint.

Cite this