King's College London

Research portal

Role of Pulse Pressure and Geometry of Primary Entry Tear in Acute Type B Dissection Propagation

Research output: Contribution to journalArticlepeer-review

Srikara V. Peelukhana, Yanmin Wang, Zachary Berwick, Jarin Kratzberg, Joshua Krieger, Blayne Roeder, Rachel Clough, Albert Hsiao, Sean Chambers, Ghassan S. Kassab

Original languageEnglish
Pages (from-to)592-603
Number of pages12
JournalAnnals of Biomedical Engineering
Issue number3
Early online date10 Aug 2016
Accepted/In press3 Aug 2016
E-pub ahead of print10 Aug 2016
PublishedMar 2017


King's Authors


The hemodynamic and geometric factors leading to propagation of acute Type B dissections are poorly understood. The objective is to elucidate whether geometric and hemodynamic parameters increase the predilection for aortic dissection propagation. A pulse duplicator set-up was used on porcine aorta with a single entry tear. Mean pressures of 100 and 180 mmHg were used, with pulse pressures ranging from 40 to 200 mmHg. The propagation for varying geometric conditions (%circumference of the entry tear: 15–65%, axial length: 0.5–3.2 cm) were tested for two flap thicknesses (1/3rd and 2/3rd of the thickness of vessel wall, respectively). To assess the effect of pulse and mean pressure on flap dynamics, the %true lumen (TL) cross-sectional area of the entry tear were compared. The % circumference for propagation of thin flap (47 ± 1%) was not significantly different (p = 0.14) from thick flap (44 ± 2%). On the contrary, the axial length of propagation for thin flap (2.57 ± 0.15 cm) was significantly different (p < 0.05) from the thick flap (1.56 ± 0.10 cm). TL compression was observed during systolic phase. For a fixed geometry of entry tear (%circumference = 39 ± 2%; axial length = 1.43 ± 0.13 cm), mean pressure did not have significant (p = 0.84) effect on flap movement. Increase in pulse pressure resulted in a significant change (p = 0.02) in %TL area (52 ± 4%). The energy acting on the false lumen immediately before propagation was calculated as 75 ± 9 J/m2 and was fairly uniform across different specimens. Pulse pressure had a significant effect on the flap movement in contrast to mean pressure. Hence, mitigation of pulse pressure and restriction of flap movement may be beneficial in patients with type B acute dissections.

Download statistics

No data available

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454