King's College London

Research portal

Run-time Detection and Mitigation of Power-Noise Viruses

Research output: Contribution to conference typesPaper

V. Tenentes, S. Das, D. Rossi, Bashir M. Al-Hashimi

Original languageEnglish
Pages275-280
DOIs
Publication statusPublished - 3 Oct 2019

Bibliographical note

cited By 0

King's Authors

Abstract

Power-noise viruses can be used as denial-of-service attacks by causing voltage emergencies in multi-core microprocessors that may lead to data corruptions and system crashes. In this paper, we present a run-time system for detecting and mitigating power-noise viruses. We present voltage noise data from a power-noise virus and benchmarks collected from an Arm multi-core processor, and we observe that the frequency of voltage emergencies is dramatically increasing during the execution of power-noise attacks. Based on this observation, we propose a regression model that allows for a run-time estimation of the severity of voltage emergencies by monitoring the frequency of voltage emergencies and the operating frequency of the microprocessor. For mitigating the problem, during the execution of critical tasks that require protection, we propose a system which periodically evaluates the severity of voltage emergencies and adapts its operating frequency in order to honour a predefined severity constraint. We demonstrate the efficacy of the proposed run-time system.

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454