@article{0c7af44d50af45fe9d35ec241609ae89,
title = "Search for flavour-changing neutral-current interactions of a top quark and a gluon in pp collisions at √s=13 TeV with the ATLAS detector",
abstract = "A search is presented for the production of a single top quark via left-handed flavour-changing neutral-current (FCNC) interactions of a top quark, a gluon and an up or charm quark. Two production processes are considered: u+ g→ t and c+ g→ t. The analysis is based on proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. The data set corresponds to an integrated luminosity of 139 fb- 1. Events with exactly one electron or muon, exactly one b-tagged jet and missing transverse momentum are selected, resembling the decay products of a singly produced top quark. Neural networks based on kinematic variables differentiate between events from the two signal processes and events from background processes. The measured data are consistent with the background-only hypothesis, and limits are set on the production cross-sections of the signal processes: σ(u+g→t)×B(t→Wb)×B(W→ℓν)<3.0pb and σ(c+g→t)×B(t→Wb)×B(W→ℓν)<4.7pb at the 95% confidence level, with B(W→ ℓν) = 0.325 being the sum of branching ratios of all three leptonic decay modes of the W boson. Based on the framework of an effective field theory, the cross-section limits are translated into limits on the strengths of the tug and tcg couplings occurring in the theory: |CuGut|/Λ2<0.057TeV- 2 and |CuGct|/Λ2<0.14TeV- 2. These bounds correspond to limits on the branching ratios of FCNC-induced top-quark decays: B(t→ u+ g) < 0.61 × 10 - 4 and B(t→ c+ g) < 3.7 × 10 - 4.",
author = "{ATLAS Collaboration} and G. Aad and B. Abbott and Abbott, {D. C.} and {Abed Abud}, A. and K. Abeling and Abhayasinghe, {D. K.} and Abidi, {S. H.} and A. Aboulhorma and H. Abramowicz and H. Abreu and Y. Abulaiti and {Abusleme Hoffman}, {A. C.} and Acharya, {B. S.} and B. Achkar and L. Adam and {Adam Bourdarios}, C. and L. Adamczyk and L. Adamek and Addepalli, {S. V.} and J. Adelman and A. Adiguzel and S. Adorni and T. Adye and Affolder, {A. A.} and Y. Afik and C. Agapopoulou and Agaras, {M. N.} and J. Agarwala and A. Aggarwal and C. Agheorghiesei and Aguilar-Saavedra, {J. A.} and A. Ahmad and F. Ahmadov and Ahmed, {W. S.} and X. Ai and G. Aielli and I. Aizenberg and S. Akatsuka and M. Akbiyik and {\AA}kesson, {T. P.A.} and Akimov, {A. V.} and {Al Khoury}, K. and Alberghi, {G. L.} and J. Albert and P. Albicocco and {Alconada Verzini}, {M. J.} and S. Alderweireldt and M. Aleksa and Aleksandrov, {I. N.} and C. Alexa",
note = "Funding Information: We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MEiN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRC KI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ{\v S}, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; COST, ERC, ERDF, Horizon 2020 and Marie Sk{\l}odowska-Curie Actions, European Union; Investissements d{\textquoteright}Avenir Labex, Investissements d{\textquoteright}Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; Norwegian Financial Mechanism 2014-2021, Norway; NCN and NAWA, Poland; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; G{\"o}ran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. []. Publisher Copyright: {\textcopyright} 2022, The Author(s).",
year = "2022",
month = apr,
doi = "10.1140/epjc/s10052-022-10182-7",
language = "English",
volume = "82",
journal = "European Physical Journal C",
issn = "1434-6044",
publisher = "Springer New York",
number = "4",
}