King's College London

Research portal

Search for invisible modes of nucleon decay in water with the SNO+ detector

Research output: Contribution to journalArticle

Original languageEnglish
Article number032008
Pages (from-to)032008
Number of pages1
JournalPhys.Rev.D
Volume99
Issue number3
DOIs
Publication statusPublished - 20 Feb 2019

King's Authors

Abstract

This paper reports results from a search for nucleon decay through invisible modes, where no visible energy is directly deposited during the decay itself, during the initial water phase of SNO+. However, such decays within the oxygen nucleus would produce an excited daughter that would subsequently deexcite, often emitting detectable gamma rays. A search for such gamma rays yields limits of 2.5×1029 y at 90% Bayesian credibility level (with a prior uniform in rate) for the partial lifetime of the neutron, and 3.6×1029 y for the partial lifetime of the proton, the latter a 70% improvement on the previous limit from SNO. We also present partial lifetime limits for invisible dinucleon modes of 1.3×1028 y for nn, 2.6×1028 y for pn and 4.7×1028 y for pp, an improvement over existing limits by close to 3 orders of magnitude for the latter two.

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454