King's College London

Research portal

Seizure initiation in infantile spasms vs. focal seizures: proposed common cellular mechanisms

Research output: Contribution to journalArticle

Roger D Traub, Friederike Moeller, Richard Rosch, Torsten Baldeweg, Miles A Whittington, Stephen P Hall

Original languageEnglish
JournalReviews in the Neurosciences
DOIs
Publication statusE-pub ahead of print - 14 Sep 2019

King's Authors

Abstract

Infantile spasms (IS) and seizures with focal onset have different clinical expressions, even when electroencephalography (EEG) associated with IS has some degree of focality. Oddly, identical pathology (with, however, age-dependent expression) can lead to IS in one patient vs. focal seizures in another or even in the same, albeit older, patient. We therefore investigated whether the cellular mechanisms underlying seizure initiation are similar in the two instances: spasms vs. focal. We noted that in-common EEG features can include (i) a background of waves at alpha to delta frequencies; (ii) a period of flattening, lasting about a second or more - the electrodecrement (ED); and (iii) often an interval of very fast oscillations (VFO; ~70 Hz or faster) preceding, or at the beginning of, the ED. With IS, VFO temporally coincides with the motor spasm. What is different between the two conditions is this: with IS, the ED reverts to recurring slow waves, as occurring before the ED, whereas with focal seizures the ED instead evolves into an electrographic seizure, containing high-amplitude synchronized bursts, having superimposed VFO. We used in vitro data to help understand these patterns, as such data suggest cellular mechanisms for delta waves, for VFO, for seizure-related burst complexes containing VFO, and, more recently, for the ED. We propose a unifying mechanistic hypothesis - emphasizing the importance of brain pH - to explain the commonalities and differences of EEG signals in IS versus focal seizures.

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454