Abstract

The IceCube Neutrino Observatory at the South Pole has measured the diffuse astrophysical neutrino flux up to ∼PeV energies and is starting to identify first point source candidates. The next generation facility, IceCube-Gen2, aims at extending the accessible energy range to EeV in order to measure the continuation of the astrophysical spectrum, to identify neutrino sources, and to search for a cosmogenic neutrino flux. As part of IceCube-Gen2, a radio array is foreseen that is sensitive to detect Askaryan emission of neutrinos beyond ∼30 PeV. Surface and deep antenna stations have different benefits in terms of effective area, resolution, and the capability to reject backgrounds from cosmic-ray air showers and may be combined to reach the best sensitivity. The optimal detector configuration is still to be identified. This contribution presents the full-array simulation efforts for a combination of deep and surface antennas, and compares different design options with respect to their sensitivity to fulfill the science goals of IceCube-Gen2.

Original languageEnglish
Publication statusPublished - 18 Mar 2022
Event37th International Cosmic Ray Conference, ICRC 2021 - Virtual, Berlin, Germany
Duration: 12 Jul 202123 Jul 2021

Conference

Conference37th International Cosmic Ray Conference, ICRC 2021
Country/TerritoryGermany
CityVirtual, Berlin
Period12/07/202123/07/2021

Fingerprint

Dive into the research topics of 'Sensitivity studies for the IceCube-Gen2 radio array'. Together they form a unique fingerprint.

Cite this