TY - JOUR
T1 - Sex-dependent QRS guidelines for Cardiac Resynchronization Therapy using Computer Model Predictions
AU - Lee, Angela Wing Chung
AU - O'Regan, Declan P.
AU - Gould, Justin Simon
AU - Sidhu, Baldeep Singh
AU - Sieniewicz, Benjamin
AU - Plank, Gernot
AU - Warriner, David R
AU - Lamata, Pablo
AU - Rinaldi, Christopher Aldo
AU - Niederer, Steven Alexander
PY - 2019/12/17
Y1 - 2019/12/17
N2 - Cardiac resynchronization therapy (CRT) is an important treatment for heart failure. Low female enrollment in clinical trials means that current CRT guidelines may be biased toward males. However, females have higher response rates at lower QRS duration (QRSd) thresholds. Sex differences in the left ventricle (LV) size could provide an explanation for the improved female response at lower QRSd. We aimed to test if sex differences in CRT response at lower QRSd thresholds are explained by differences in LV size and hence predict sex-specific guidelines for CRT. We investigated the effect that LV size sex difference has on QRSd between male and females in 1093 healthy individuals and 50 CRT patients using electrophysiological computer models of the heart. Simulations on the healthy mean shape models show that LV size sex difference can account for 50–100% of the sex difference in baseline QRSd in healthy individuals. In the CRT patient cohort, model simulations predicted female-specific guidelines for CRT, which were 9–13 ms lower than current guidelines. Sex differences in the LV size are able to account for a significant proportion of the sex difference in QRSd and provide a mechanistic explanation for the sex difference in CRT response. Simulations accounting for the smaller LV size in female CRT patients predict 9–13 ms lower QRSd thresholds for female CRT guidelines.
AB - Cardiac resynchronization therapy (CRT) is an important treatment for heart failure. Low female enrollment in clinical trials means that current CRT guidelines may be biased toward males. However, females have higher response rates at lower QRS duration (QRSd) thresholds. Sex differences in the left ventricle (LV) size could provide an explanation for the improved female response at lower QRSd. We aimed to test if sex differences in CRT response at lower QRSd thresholds are explained by differences in LV size and hence predict sex-specific guidelines for CRT. We investigated the effect that LV size sex difference has on QRSd between male and females in 1093 healthy individuals and 50 CRT patients using electrophysiological computer models of the heart. Simulations on the healthy mean shape models show that LV size sex difference can account for 50–100% of the sex difference in baseline QRSd in healthy individuals. In the CRT patient cohort, model simulations predicted female-specific guidelines for CRT, which were 9–13 ms lower than current guidelines. Sex differences in the LV size are able to account for a significant proportion of the sex difference in QRSd and provide a mechanistic explanation for the sex difference in CRT response. Simulations accounting for the smaller LV size in female CRT patients predict 9–13 ms lower QRSd thresholds for female CRT guidelines.
U2 - 10.1016/j.bpj.2019.08.025
DO - 10.1016/j.bpj.2019.08.025
M3 - Article
SN - 0006-3495
VL - 117
SP - 2375
EP - 2381
JO - Biophysical Journal
JF - Biophysical Journal
IS - 12
ER -