King's College London

Research portal

Sharp estimates for conditionally centred moments and for compact operators on $L^p$ spaces

Research output: Contribution to journalArticlepeer-review

Original languageEnglish
Pages (from-to)368-381
Number of pages14
JournalMathematische Nachrichten
Volume296
Issue number1
Early online date18 Dec 2022
Accepted/In press15 Feb 2022
E-pub ahead of print18 Dec 2022
Published29 Jan 2023

King's Authors

Abstract

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space, $\xi$ be a random variable on $(\Omega, \mathcal{F}, \mathbf{P})$, $\mathcal{G}$ be a sub-$\sigma$-algebra of $\mathcal{F}$, and let $\mathbf{E}^\mathcal{G} = \mathbf{ E}(\cdot | \mathcal{G})$ be the corresponding conditional expectation operator. We obtain sharp estimates for the moments of $\xi - \mathbf{E}^\mathcal{G}\xi$ in terms of the moments of $\xi$. This allows us to find the optimal constant in the bounded compact approximation property of $L^p([0, 1])$, $1 < p < \infty$.

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454