Abstract
Direct drug targeting of mutated proteins in cancer is not always possible and efficacy can be nullified by compensating protein-protein interactions (PPIs). Here, we establish an in silico pipeline to identify specific PPI sub-networks containing mutated proteins as potential targets, which we apply to mutation data of four different leukaemias. Our method is based on extracting cyclic interactions of a small number of proteins topologically and functionally linked in the Protein-Protein Interaction Network (PPIN), which we call short loop network motifs (SLM). We uncover a new property of PPINs named 'short loop commonality' to measure indirect PPIs occurring via common SLM interactions. This detects 'modules' of PPI networks enriched with annotated biological functions of proteins containing mutation hotspots, exemplified by FLT3 and other receptor tyrosine kinase proteins. We further identify functional dependency or mutual exclusivity of short loop commonality pairs in large-scale cellular CRISPR-Cas9 knockout screening data. Our pipeline provides a new strategy for identifying new therapeutic targets for drug discovery.
Original language | English |
---|---|
Article number | lqab010 |
Journal | NAR Genomics and Bioinformatics |
Volume | 3 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Mar 2021 |