Abstract
OBJECTIVES: Simulation is gaining increasing interest as a method of delivering high-quality, time-effective, and safe training to neurosurgical residents. However, most current simulators are purpose-built for simulation, being relatively expensive and inaccessible to many residents. The purpose of this study was to provide the first comprehensive validity assessment of ventriculostomy performance metrics from the Medtronic StealthStation S7 Surgical Navigation System, a neuronavigational tool widely used in the clinical setting, as a training tool for simulated ventriculostomy while concomitantly reporting on stress measures.
DESIGN: A prospective study where participants performed 6 simulated ventriculostomy attempts on a model head with StealthStation-coregistered imaging. The performance measures included distance of the ventricular catheter tip to the foramen of Monro and presence of the catheter tip in the ventricle. Data on objective and self-reported stress and workload measures were also collected.
SETTING: The operating rooms of the National Hospital for Neurology and Neurosurgery, Queen Square, London.
PARTICIPANTS: A total of 31 individuals with varying levels of prior ventriculostomy experience, varying in seniority from medical student to senior resident.
RESULTS: Performance at simulated ventriculostomy improved significantly over subsequent attempts, irrespective of previous ventriculostomy experience. Performance improved whether or not the StealthStation display monitor was used for real-time visual feedback, but performance was optimal when it was. Further, performance was inversely correlated with both objective and self-reported measures of stress (traditionally referred to as concurrent validity). Stress and workload measures were well-correlated with each other, and they also correlated with technical performance.
CONCLUSIONS: These initial data support the use of the StealthStation as a training tool for simulated ventriculostomy, providing a safe environment for repeated practice with immediate feedback. Although the potential implications are profound for neurosurgical education and training, further research following this proof-of-concept study is required on a larger scale for full validation and proof that training translates into improved long-term simulated and patient outcomes.
Original language | English |
---|---|
Pages (from-to) | 704-716 |
Number of pages | 13 |
Journal | Journal of Surgical Education |
Volume | 72 |
Issue number | 4 |
DOIs | |
Publication status | Published - 28 Jan 2015 |