King's College London

Research portal

Sociality and the telencephalic distribution of corticotrophin-releasing factor, urocortin 3, and binding sites for CRF type 1 and type 2 receptors: A comparative study of eusocial naked mole-rats and solitary Cape mole-rats

Research output: Contribution to journalArticle

Clive W Coen, Theodosis Kalamatianos, Maria K Oosthuizen, Ravi Poorun, Christopher G Faulkes, Nigel C Bennett

Original languageEnglish
Pages (from-to)2344-71
Number of pages28
JournalJournal of Comparative Neurology
Issue number16
Early online date12 May 2015
Accepted/In press14 Apr 2015
E-pub ahead of print12 May 2015
Published1 Nov 2015

King's Authors


Various aspects of social behavior are influenced by the highly conserved corticotrophin-releasing factor (CRF) family of peptides and receptors in the mammalian telencephalon. This study has mapped and compared the telencephalic distribution of the CRF receptors, CRF1 and CRF2 , and two of their ligands, CRF and urocortin 3, respectively, in African mole-rat species with diametrically opposed social behavior. Naked mole-rats live in large eusocial colonies that are characterized by exceptional levels of social cohesion, tolerance, and cooperation in burrowing, foraging, defense, and alloparental care for the offspring of the single reproductive female. Cape mole-rats are solitary; they tolerate conspecifics only fleetingly during the breeding season. The telencephalic sites at which the level of CRF1 binding in naked mole-rats exceeds that in Cape mole-rats include the basolateral amygdaloid nucleus, hippocampal CA3 subfield, and dentate gyrus; in contrast, the level is greater in Cape mole-rats in the shell of the nucleus accumbens and medial habenular nucleus. For CRF2 binding, the sites with a greater level in naked mole-rats include the basolateral amygdaloid nucleus and dentate gyrus, but the septohippocampal nucleus, lateral septal nuclei, amygdalostriatal transition area, bed nucleus of the stria terminalis, and medial habenular nucleus display a greater level in Cape mole-rats. The results are discussed with reference to neuroanatomical and behavioral studies of various species, including monogamous and promiscuous voles. By analogy with findings in those species, we speculate that the abundance of CRF1 binding in the nucleus accumbens of Cape mole-rats reflects their lack of affiliative behavior. J. Comp. Neurol. 523:2344-2371, 2015. © 2015 Wiley Periodicals, Inc.

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454