Spatial hydrogeomorphological influences on sediment and nutrient deposition riparian zones: Observations from the Garone River, France

J Steiger, A M Gurnell

Research output: Contribution to journalArticlepeer-review

122 Citations (Scopus)


This paper investigates the influence of geomorphological setting on riparian zone sedimentation within a reach of the River Garonne, France, during three major floods. The sampling design was stratified to reflect landforms constructed by fluvial processes (e.g. floodplain, lateral benches, islands, side channels and point bars). Observed sedimentation varied significantly with flood event, planform context, landform type and associated vegetation cover and, in some cases, with sample location within the landform. Lowest sedimentation was associated with the flood with the smallest peak discharge, peak sediment concentration and sediment load. Sites under natural riparian vegetation experienced higher sedimentation than poplar plantations. Sites on concave (outer) banks received less sedimentation than those on convex (inner banks). Sedimentation on floodplain sites and higher benches was lower than on low benches, point bars and side channels. There was considerable interdependence among these patterns, reflecting the underlying geomorphological forms and processes. Meandering rivers tend to evolve through erosion of concave banks and deposition on convex banks. Point bar features tend to be built along convex banks, whilst concave banks are eroded into higher floodplain and bench features. As a result, concave banks tend to be bordered by higher riparian margins that are less frequently flooded than convex banks. Where river margins are developed for agriculture, the higher, less frequently flooded sites are preferentially selected. Analyses of the quantity, calibre, nutrient and carbon content of the deposited sediment reveal further significant relationships, which reflect the geomorphological structure of the riparian zone. Sediment particle size coarsens in locations with higher amounts of sedimentation. The quantities of total organic carbon (TOC), total organic nitrogen (TON) and total phosphorus (TP) all increase as the quantity of deposited sediment increases. The concentration of TOC and TON also increased significantly with an increase in the percentage of silt plus clay in the deposited sediments. Based upon the above observations, a conceptual model is proposed, which considers the spatial pattern in riparian zone sedimentation according to riparian morphology and flood magnitude. The implications of channel incision for the functioning of the model are also discussed. (c) 2002 Elsevier Science B.V. All rights reserved.
Original languageEnglish
Pages (from-to)1 - 23
Number of pages23
Issue number1
Publication statusPublished - 1 Jan 2003


Dive into the research topics of 'Spatial hydrogeomorphological influences on sediment and nutrient deposition riparian zones: Observations from the Garone River, France'. Together they form a unique fingerprint.

Cite this