Abstract
Spiking Neural Networks (SNNs) have been recently integrated into Transformer architectures due to their potential to reduce computational demands and to improve power efficiency. Yet, the implementation of the attention mechanism using spiking signals on general-purpose computing platforms remains ineffi-cient. In this paper, we propose a novel framework leveraging stochastic computing (SC) to effectively execute the dot-product attention for SNN-based Transformers. We demonstrate that our approach can achieve high classification accuracy (83.53%) on CIFAR-10 within 10 time steps, which is comparable to the performance of a baseline artificial neural network implementation (83.66%). We estimate that the proposed SC approach can lead to over 6.3× reduction in computing energy and 1.7× reduction in memory access costs for a digital CMOS-based ASIC design. We experimentally validate our stochastic attention block design through an FPGA implementation, which is shown to achieve 48× lower latency as compared to a GPU implementation, while consuming 15× less power.
Original language | English |
---|---|
Pages | 31-35 |
Number of pages | 5 |
DOIs | |
Publication status | Published - 2024 |
Event | 6th IEEE International Conference on AI Circuits and Systems, AICAS 2024 - Abu Dhabi, United Arab Emirates Duration: 22 Apr 2024 → 25 Apr 2024 |
Conference
Conference | 6th IEEE International Conference on AI Circuits and Systems, AICAS 2024 |
---|---|
Country/Territory | United Arab Emirates |
City | Abu Dhabi |
Period | 22/04/2024 → 25/04/2024 |
Keywords
- attention
- hardware accelerator
- Spiking neural network
- stochastic computing
- Transformer