King's College London

Research portal

Stress-activated Dendritic Cells (DC) Induce Dual Interleukin (IL)-15- and IL1β-mediated Pathways, Which May Elicit CD4+ Memory T Cells and Interferon (IFN)-stimulated Genes

Research output: Contribution to journalArticle

Yufei Wang, Paul Lavender, Julie Watson, Matthew Arno, Thomas Lehner

Original languageEnglish
Pages (from-to)15595-609
Number of pages15
JournalJournal of Biological Chemistry
Volume290
Issue number25
Early online date2015
DOIs
Publication statusPublished - 19 Jun 2015

Documents

  • Final JBC

    Final_JBC.pdf, 988 KB, application/pdf

    5/09/2017

    Accepted author manuscript

    This research was originally published in Journal Name. Author(s). Title. Journal Name. Year. Vol:pp-pp. © the American Society for Biochemistry and Molecular Biology"

King's Authors

Abstract

The prevailing evidence suggests that immunological memory does not require antigenic re-stimulation but is maintained by low level tonic stimulation. We examined the hypothesis that stress agents contribute to tonic cellular activation and maintain immunological memory. Stimulation of monocyte-derived dendritic cells (DC) with stress agents elicits reactive oxygen species and HSP70. NFκB is activated, which up-regulates membrane-associated (ma) IL-15, caspase-1 and IL-1β. Co-culture of stress-treated DC with mononuclear cells activates IL-15 and IL-1β receptors on CD4(+) T cells, eliciting CD40L, proliferation, and up-regulation of CD45RO(+) memory T cells. The transcription factors Tbet(high) and RORγt are up-regulated, whereas FoxP3 is down-regulated, resulting in enhanced Th1 and Th17 expression and the corresponding cytokines. The interaction between maIL-15 expressed by DC and IL-15R on CD4(+) T cells results in one pathway and the corresponding cells expressing IL-1β and IL1βR as a second pathway. Importantly, inhibition studies with IL-15 antibodies and IL-1βR inhibitor suggest that both pathways may be required for optimum CD4(+) CD45RO(+) memory T cell expression. Type 1 IFN expression in splenic CD11c DC of stress-treated mice demonstrated a significant increase of IFN-α in CD11c CD317(+) and CD8α(+) DC. Analysis of RNA in human CD4(+) memory T cells showed up-regulation of type 1 IFN-stimulated genes and inhibition with histone methyltransferase inhibitor. We suggest the paradigm that stress-induced tonic stimulation might be responsible for the robust persistence of the immune response in vaccination and that epigenetic changes are involved in maintaining CD4(+) T cell memory.

Download statistics

No data available

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454