TY - JOUR
T1 - Stringy-running-vacuum-model inflation
T2 - from primordial gravitational waves and stiff axion matter to dynamical dark energy
AU - Mavromatos, Nick E.
AU - Solà Peracaula, Joan
N1 - Funding Information:
The work of NEM is supported in part by the UK Science and Technology Facilities research Council (STFC) under the research grant ST/T000759/1. The work of JS has been partially supported by projects PID2019-105614GB-C21 and FPA2016-76005-C2-1-P (MINECO, Spain), 2017-SGR-929 (Generalitat de Catalunya) and MDM-2014-0369 (ICCUB). The authors also acknowledge participation in the COST Association Action CA18108 “Quantum Gravity Phenomenology in the Multimessenger Approach (QG-MM)”. NEM acknowledges a scientific associateship (“Doctor Vinculado”) at IFIC-CSIC-Valencia University, Valencia, Spain.
Funding Information:
The work of NEM is supported in part by the UK Science and Technology Facilities research Council (STFC) under the research grant ST/T000759/1. The work of JS has been partially supported by projects PID2019-105614GB-C21 and FPA2016-76005-C2-1-P (MINECO, Spain), 2017-SGR-929 (Generalitat de Catalunya) and MDM-2014-0369 (ICCUB). The authors also acknowledge participation in the COST Association Action CA18108 ?Quantum Gravity Phenomenology in the Multimessenger Approach (QG-MM) ?. NEM acknowledges a scientific associateship (?Doctor Vinculado ?) at IFIC-CSIC-Valencia University, Valencia, Spain.
Publisher Copyright:
© 2021, The Author(s).
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/8
Y1 - 2021/8
N2 - In previous works, we have derived a Running Vacuum Model (RVM) for a string Universe, which provides an effective description of the evolution of 4-dimensional string-inspired cosmologies from inflation till the present epoch. In the context of this “stringy RVM” version, it is assumed that the early Universe is characterised by purely gravitational degrees of freedom, from the massless gravitational string multiplet, including the antisymmetric tensor field. The latter plays an important role, since its dual gives rise to a ‘stiff’ gravitational axion “matter”, which in turn couples to the gravitational anomaly terms, assumed to be non-trivial at early epochs. In the presence of primordial gravitational wave (GW) perturbations, such anomalous couplings lead to an RVM-like dynamical inflation, without external inflatons. We review here this framework and discuss potential scenarios for the generation of such primordial GW, among which the formation of unstable domain walls, which eventually collapse in a non-spherical-symmetric manner, giving rise to GW. We also remark that the same type of “stiff” axionic matter could provide, upon the generation of appropriate potentials during the post-inflationary eras, (part of) the Dark Matter (DM) in the Universe, which could well be ultralight, depending on the parameters of the string-inspired model. All in all, the new (stringy) mechanism for RVM inflation preserves the basic structure of the original (and more phenomenological) RVM, as well as its main advantages: namely, a mechanism for graceful exit and for generating a huge amount of entropy capable of explaining the horizon problem. It also predicts axionic DM and the existence of mild dynamical Dark Energy (DE) of quintessence type in the present universe, both being “living fossils” of the inflationary stages of the cosmic evolution. Altogether the modern RVM appears to be a theoretically sound (string-based) approach to cosmology with a variety of phenomenologically testable consequences.
AB - In previous works, we have derived a Running Vacuum Model (RVM) for a string Universe, which provides an effective description of the evolution of 4-dimensional string-inspired cosmologies from inflation till the present epoch. In the context of this “stringy RVM” version, it is assumed that the early Universe is characterised by purely gravitational degrees of freedom, from the massless gravitational string multiplet, including the antisymmetric tensor field. The latter plays an important role, since its dual gives rise to a ‘stiff’ gravitational axion “matter”, which in turn couples to the gravitational anomaly terms, assumed to be non-trivial at early epochs. In the presence of primordial gravitational wave (GW) perturbations, such anomalous couplings lead to an RVM-like dynamical inflation, without external inflatons. We review here this framework and discuss potential scenarios for the generation of such primordial GW, among which the formation of unstable domain walls, which eventually collapse in a non-spherical-symmetric manner, giving rise to GW. We also remark that the same type of “stiff” axionic matter could provide, upon the generation of appropriate potentials during the post-inflationary eras, (part of) the Dark Matter (DM) in the Universe, which could well be ultralight, depending on the parameters of the string-inspired model. All in all, the new (stringy) mechanism for RVM inflation preserves the basic structure of the original (and more phenomenological) RVM, as well as its main advantages: namely, a mechanism for graceful exit and for generating a huge amount of entropy capable of explaining the horizon problem. It also predicts axionic DM and the existence of mild dynamical Dark Energy (DE) of quintessence type in the present universe, both being “living fossils” of the inflationary stages of the cosmic evolution. Altogether the modern RVM appears to be a theoretically sound (string-based) approach to cosmology with a variety of phenomenologically testable consequences.
UR - http://www.scopus.com/inward/record.url?scp=85112359427&partnerID=8YFLogxK
U2 - 10.1140/epjs/s11734-021-00197-8
DO - 10.1140/epjs/s11734-021-00197-8
M3 - Article
AN - SCOPUS:85112359427
SN - 1951-6355
VL - 230
SP - 2077
EP - 2110
JO - European Physical Journal: Special Topics
JF - European Physical Journal: Special Topics
IS - 9
ER -