TY - JOUR
T1 - Structural analysis of the core region of O-lipopolysaccharide of Porphyromonas gingivalis from mutants defective in O-antigen ligase and O-antigen polymerase
AU - Paramonov, Nikolay A.
AU - Aduse-Opoku, Joseph
AU - Hashim, Ahmed
AU - Rangarajan, Minnie
AU - Curtis, Michael A.
PY - 2009/8
Y1 - 2009/8
N2 - Porphyromonas gingivalis synthesizes two lipopolysaccharides (LPSs), O-LPS and A-LPS. Here, we elucidate the structure of the core oligosaccharide (OS) of O-LPS from two mutants of P. gingivalis W50, ΔPG1051 (WaaL, O-antigen ligase) and ΔPG1142 (O-antigen polymerase), which synthesize R-type LPS (core devoid of O antigen) and SR-type LPS (core plus one repeating unit of O antigen), respectively. Structural analyses were performed using one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy in combination with composition and methylation analysis. The outer core OS of O-LPS occurs in two glycoforms: an "uncapped core," which is devoid of O polysaccharide (O-PS), and a "capped core," which contains the site of O-PS attachment. The inner core region lacks L(D)-glycero-D(L)-manno-heptosyl residues and is linked to the outer core via 3-deoxy-D-manno-octulosonic acid, which is attached to a glycerol residue in the outer core via a monophosphodiester bridge. The outer region of the "uncapped core" is attached to the glycerol and is composed of a linear α-(1→3)-linked D-Man OS containing four or five mannopyranosyl residues, one-half of which are modified by phosphoethanolamine at position 6. An amino sugar, α-D-allosamine, is attached to the glycerol at position 3. In the "capped core," there is a three- to five-residue extension of α-(1→3)-linked Man residues glycosylating the outer core at the nonreducing terminal residue. β-D-GalNAc from the O-PS repeating unit is attached to the nonreducing terminal Man at position 3. The core OS of P. gingivalis O-LPS is therefore a highly unusual structure, and it is the basis for further investigation of the mechanism of assembly of the outer membrane of this important periodontal bacterium.
AB - Porphyromonas gingivalis synthesizes two lipopolysaccharides (LPSs), O-LPS and A-LPS. Here, we elucidate the structure of the core oligosaccharide (OS) of O-LPS from two mutants of P. gingivalis W50, ΔPG1051 (WaaL, O-antigen ligase) and ΔPG1142 (O-antigen polymerase), which synthesize R-type LPS (core devoid of O antigen) and SR-type LPS (core plus one repeating unit of O antigen), respectively. Structural analyses were performed using one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy in combination with composition and methylation analysis. The outer core OS of O-LPS occurs in two glycoforms: an "uncapped core," which is devoid of O polysaccharide (O-PS), and a "capped core," which contains the site of O-PS attachment. The inner core region lacks L(D)-glycero-D(L)-manno-heptosyl residues and is linked to the outer core via 3-deoxy-D-manno-octulosonic acid, which is attached to a glycerol residue in the outer core via a monophosphodiester bridge. The outer region of the "uncapped core" is attached to the glycerol and is composed of a linear α-(1→3)-linked D-Man OS containing four or five mannopyranosyl residues, one-half of which are modified by phosphoethanolamine at position 6. An amino sugar, α-D-allosamine, is attached to the glycerol at position 3. In the "capped core," there is a three- to five-residue extension of α-(1→3)-linked Man residues glycosylating the outer core at the nonreducing terminal residue. β-D-GalNAc from the O-PS repeating unit is attached to the nonreducing terminal Man at position 3. The core OS of P. gingivalis O-LPS is therefore a highly unusual structure, and it is the basis for further investigation of the mechanism of assembly of the outer membrane of this important periodontal bacterium.
UR - http://www.scopus.com/inward/record.url?scp=67749117911&partnerID=8YFLogxK
U2 - 10.1128/JB.00019-09
DO - 10.1128/JB.00019-09
M3 - Article
C2 - 19525343
AN - SCOPUS:67749117911
SN - 0021-9193
VL - 191
SP - 5272
EP - 5282
JO - Journal of Bacteriology
JF - Journal of Bacteriology
IS - 16
ER -