King's College London

Research portal

Structural and Spectroscopic Characterization of TPGS Micelles: Disruptive Role of Cyclodextrins and Kinetic Pathways

Research output: Contribution to journalArticlepeer-review

Joan Puig-Rigall, Isabelle Grillo, Cécile A. Dreiss, Gustavo González-Gaitano

Original languageEnglish
Pages (from-to)4737-4747
Number of pages11
JournalLangmuir : the ACS journal of surfaces and colloids
Issue number19
E-pub ahead of print16 Apr 2017


King's Authors


The aggregation and structure of d-α-tocopheryl polyethylene glycol succinate micelles, TPGS-1000, an amphiphilic derivative of vitamin E, were characterized using scattering and spectroscopic methods, and the impact of different cyclodextrins (CDs) on the self-assembly was investigated, with the view of combining these two versatile pharmaceutical excipients in drug formulations. Combined small-angle neutron scattering (SANS), dynamic light scattering, and time-resolved and steady-state fluorescence emission experiments revealed a core-shell architecture with a high aggregation number (Nagg ≈ 100) and a highly hydrated poly(ethylene oxide) corona (∼11 molecules of solvent per ethylene oxide unit). Micelles form gradually, with no sharp onset. Structural parameters and hydration of the aggregates were surprisingly stable with both temperature and concentration, which is a critical advantage for their use in pharmaceutical formulations. CDs were shown to affect the self-assembly of TPGS in different ways. Whereas native CDs induced the precipitation of a solid complex (pseudopolyrotaxane), methylated β-CDs led to different outcomes: constructive (micellar expansion), destructive (micellar rupture), or no effect, depending on the number of substituents and whether the substitution pattern was regular or random on the rims of the macrocycle. Time-resolved SANS studies on mixtures of TPGS with regularly dimethylated β-CD (DIMEB), which ruptures the micelles, revealed an almost instantaneous demicellization (<100 ms) and showed that the process involved the formation of large aggregates whose size evolved over time. Micellar rupture is caused by the formation of a TPGS-DIMEB inclusion complex, involving the incorporation of up to three macrocycles on the tocopherol, as shown by proton nuclear magnetic resonance (NMR) and ROESY NMR. Analysis of NMR data using Hill's equation revealed that the binding is rather cooperative, with the threading of the CD favoring the subsequent inclusion of additional CDs on the aliphatic moiety.

Download statistics

No data available

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454