Abstract
Based on first-principles calculations, the structural stability and magnetic variety of Pt13 nanoparticles encapsulated in a NaY zeolite were investigated. Among 50 stable isomers in the gas phase, due to geometrical constraints, only 1/3 of those clusters can be inserted in the zeolite pores. Based on first-principles calculations, the structural stability and magnetic variety of Pt$_{13}$ nanoparticles encapsulated in a NaY zeolite are investigated. Among 50 stable isomers in the gas phase, due to geometrical constraints, only about 1/3 of those clusters can be inserted in the zeolite pores. Severe structural rearrangements occur depending on whether the solid angle at the Pt vertex bound to the super-cage is larger than 2 sr (i.e., icosahedron). The most relevant example is the structural instability of the icosahedron and, when including van der Walls dispersion forces the opening of the gas phase global minimum towards a new L-shaped cubic wire, otherwise unstable. The total magnetisation of the encapsulated Pt$_{13}$ decreases due to the stabilisation of less coordinated isomers, with the majority of clusters characterised by a total magnetisation of 2 $\mu_B$, while the majority of free clusters exhibits a threefold value. This analysis allows understanding the magnetic behaviour observed in recent experiments through the variety of the isomers which can be accommodated in the zeolite pore.
Original language | English |
---|---|
Pages (from-to) | 15658-15665 |
Number of pages | 8 |
Journal | Nanoscale |
Volume | 9 |
Issue number | 40 |
Early online date | 19 Sept 2017 |
DOIs | |
Publication status | Published - 28 Oct 2017 |
Keywords
- magnetism, Pt, nanoparticle, zeolite