King's College London

Research portal

Structure and Function of the Arginine Repressor-Operator Complex from Bacillus subtilis

Research output: Contribution to journalArticle

James A. Garnett, Ferenc Marincs, Simon Baumberg, Peter G. Stockley, Simon E.V. Phillips

Original languageEnglish
Pages (from-to)284-298
Number of pages15
JournalJournal of Molecular Biology
Issue number2
Publication statusPublished - 29 May 2008

King's Authors


In many bacteria, the concentration of L-arginine is controlled by a transcriptional regulator, the arginine repressor. In Bacillus subtilis this transcription factor is called AhrC and has roles in both the repression and activation of the genes involved in arginine metabolism. It interacts with 18 bp ARG boxes in the promoters of arginine biosynthetic and catabolic operons. AhrC is a hexamer and each subunit has two domains. The C-terminal domains form the core, mediating inter-subunit interactions and L-arginine binding, while the N-terminal domains contain a winged helix-turn-helix DNA-binding motif and are arranged around the periphery. Upon binding of the co-repressor L-arginine there is a ∼ 15° relative rotation between core C-terminal trimers. Here, we report the X-ray crystal structure of a dimer of the N-terminal domains of AhrC (NAhrC) in complex with an 18 bp DNA ARG box operator, refined to 2.85 Å resolution. Comparison of the N-terminal domains within this complex with those of the free domain reveals that the flexible β-wings of the DNA-binding motif in the free domain form a stable dimer interface in the protein-DNA complex, favouring correct orientation of the recognition helices. These are then positioned to insert into adjacent turns of the major groove of the ARG box, whilst the wings contact the minor groove. There are extensive contacts between the protein and the DNA phosphodiester backbone, as well as a number of direct hydrogen bonds between conserved amino acid side chains and bases. Combining this structure with other crystal structures of other AhrC components, we have constructed a model of the repression complex of AhrC at the B. subtilis biosynthetic argC operator and, along with transcriptome data, analysed the origins of sequence specificity and arginine activation.

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454