Super-resolution track-density imaging of thalamic substructures: Comparison with high-resolution anatomical magnetic resonance imaging at 7.0T

Fernando Calamante, Se-Hong Oh, Jacques-Donald Tournier, Sung-Yeon Park, Young-Don Son, Jun-Young Chung, Je-Geun Chi, Graeme D. Jackson, Chan-Woong Park, Young-Bo Kim, Alan Connelly, Zang-Hee Cho*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

59 Citations (Scopus)

Abstract

The thalamus is one of the most important brain structures, with strong connections between subcortical and cortical areas of the brain. Most of the incoming information to the cortex passes through the thalamus. Accurate identification of substructures of the thalamus is therefore of great importance for the understanding of human brain connectivity. Direct visualization of thalamic substructures, however, is not easily achieved with currently available magnetic resonance imaging (MRI), including ultra-high field MRI such as 7.0T, mainly due to the limited contrast between the relevant structures. Recently, improvements in ultra-high field 7.0T MRI have opened the possibility of observing thalamic substructures by well-adjusted high-resolution T-1-weighted imaging. Moreover, the recently developed super-resolution track-density imaging (TDI) technique, based on results from whole-brain fiber-tracking, produces images with sub-millimeter resolution. These two methods enable us to show markedly improved anatomical detail of the substructures of the thalamus, including their detailed locations and directionality. In this study, we demonstrate the role of TDI for the visualization of the substructures of the thalamic nuclei, and relate these images to T-1-weighted imaging at 7.0T MRI. 

Original languageEnglish
Article numberN/A
Pages (from-to)2538-2548
Number of pages11
JournalHuman Brain Mapping
Volume34
Issue number10
DOIs
Publication statusPublished - Oct 2013

Keywords

  • thalamus
  • thalamus substructures
  • track-density imaging
  • TDI
  • 7.0T MRI
  • diffusion weighted imaging
  • SPHERICAL DECONVOLUTION
  • DISTORTION CORRECTION
  • MRI
  • NUCLEI
  • ROBUST
  • VISUALIZATION
  • SEGMENTATION
  • CONNECTIVITY
  • VALIDATION
  • HISTOLOGY

Fingerprint

Dive into the research topics of 'Super-resolution track-density imaging of thalamic substructures: Comparison with high-resolution anatomical magnetic resonance imaging at 7.0T'. Together they form a unique fingerprint.

Cite this