TY - JOUR
T1 - Superoxide constricts rat pulmonary arteries via Rho-kinase-mediated Ca2+ sensitization
AU - Knock, Greg A.
AU - Snetkov, Vladimir A.
AU - Shaifta, Yasin
AU - Connolly, Michelle
AU - Drndarslci, Svetlana
AU - Noah, Anthony
AU - Pourlrlahram, Ghazaleh E.
AU - Becker, Silke
AU - Aaronson, Philip I.
AU - Ward, Jeremy P. T.
PY - 2009/3/1
Y1 - 2009/3/1
N2 - Reactive oxygen species play a key role in vascular disease, pulmonary hypertension, and hypoxic pulmonary vasoconstriction. We investigated contractile responses, intracellular Ca2+ ([Ca2+](i)), Rho-kinase translocation, and phosphorylation of the regulatory subunit of myosin phosphatase (MYPT-1) and of myosin light chain (MLC20) in response to LY83583, a generator of superoxide anion, in small intrapulmonary arteries (IPA) of rat. LY83583 Caused concentration-dependent constrictions in IPA and greatly enhanced submaximal PGF(2 alpha)-mediated preconstriction. In small femoral or mesenteric arteries of rat, LY83583 alone was without effect, but it relaxed a PGF(2)alpha-mediated preconstriction. Constrictions in IPA were inhibited by superoxide dismutase and tempol, but not catalase, anti were endothelium and guanylate cyclase independent. Constrictions were also inhibited by the Rho-kinase inhibitor Y27632 and the Src-family kinase inhibitor SU6656. LY83583 did not raise [Ca2+](i), but caused a Y27632-sensitive constriction in alpha-toxin-permeabilized IPA. LY83583 triggered translocation of Rho-kinase from the nucleus to the cytosol in pulmonary artery smooth muscle cells and enhanced phosphorylation of MYPT-1 at Thr-855 and of MLC20 at Ser-19 in IPA. This enhancement was inhibited by superoxide dismutase and abolished by Y27632. Hydrogen peroxide did not activate Rho-kinase. We conclude that in rat small pulmonary artery, superoxide triggers Rho-kinase-mediated Ca2+ sensitization and vasoconstriction independent of hydrogen peroxide. (C) 2008 Elsevier Inc. All rights reserved.
AB - Reactive oxygen species play a key role in vascular disease, pulmonary hypertension, and hypoxic pulmonary vasoconstriction. We investigated contractile responses, intracellular Ca2+ ([Ca2+](i)), Rho-kinase translocation, and phosphorylation of the regulatory subunit of myosin phosphatase (MYPT-1) and of myosin light chain (MLC20) in response to LY83583, a generator of superoxide anion, in small intrapulmonary arteries (IPA) of rat. LY83583 Caused concentration-dependent constrictions in IPA and greatly enhanced submaximal PGF(2 alpha)-mediated preconstriction. In small femoral or mesenteric arteries of rat, LY83583 alone was without effect, but it relaxed a PGF(2)alpha-mediated preconstriction. Constrictions in IPA were inhibited by superoxide dismutase and tempol, but not catalase, anti were endothelium and guanylate cyclase independent. Constrictions were also inhibited by the Rho-kinase inhibitor Y27632 and the Src-family kinase inhibitor SU6656. LY83583 did not raise [Ca2+](i), but caused a Y27632-sensitive constriction in alpha-toxin-permeabilized IPA. LY83583 triggered translocation of Rho-kinase from the nucleus to the cytosol in pulmonary artery smooth muscle cells and enhanced phosphorylation of MYPT-1 at Thr-855 and of MLC20 at Ser-19 in IPA. This enhancement was inhibited by superoxide dismutase and abolished by Y27632. Hydrogen peroxide did not activate Rho-kinase. We conclude that in rat small pulmonary artery, superoxide triggers Rho-kinase-mediated Ca2+ sensitization and vasoconstriction independent of hydrogen peroxide. (C) 2008 Elsevier Inc. All rights reserved.
U2 - 10.1016/j.freeradbiomed.2008.11.015
DO - 10.1016/j.freeradbiomed.2008.11.015
M3 - Article
VL - 46
SP - 633
EP - 642
JO - Free Radical Biology and Medicine
JF - Free Radical Biology and Medicine
IS - 5
ER -