Synthesising Brain Iron Maps from Quantitative Magnetic Resonance Images Using Interpretable Generative Adversarial Networks

Lindsay Munroe*, Maria Deprez, Christos Michaelides, Harry G. Parkes, Kalotina Geraki, Amy H. Herlihy, Po Wah So

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference paperpeer-review

Abstract

Accurate spatial estimation of brain iron concentration in-vivo is vital to elucidate the role of iron in neurodegenerative diseases, among other applications. However, ground truth quantitative iron maps of the brain can only be acquired post-mortem from ex-vivo samples. Quantitative magnetic resonance imaging (QMRI) methods are iron-sensitive and hold potential to quantitatively measure brain iron. We hypothesise interpretability methods can identify the most salient QMRI parameter(s) for iron prediction. In this study, a generative adversarial network with spatially adaptive normalisation layers (SPADE) was trained to synthesise maps of brain iron content from QMRI parameters, including those from relaxometry, diffusion and magnetisation transfer MRI. Ground truth maps of iron content were obtained by synchrotron radiation X-ray fluorescence (SRXRF). QMRI and SRXRF datasets were registered, and a distribution-based loss was proposed to address misalignment from multi-modal QMRI-to-SRXRF registration. To enable interpretation, channel attention was incorporated to learn feature importance for QMRI parameters. Attention weights were compared against occlusion and local interpretable model-agnostic explanations. Our model achieved dice scores of 0.97 and 0.95 for grey and white matter, respectively, when comparing tissue boundaries of synthesised vs. MRI images. Examining the contrast in predicted vs. ground truth iron maps, our model achieved 15.2% and 17.8% normalised absolute error for grey and white matter, respectively. All three interpretable methods ranked fractional anisotropy as the most salient, followed by myelin water fraction and magnetisation transfer ratio. The co-location of iron and myelin may explain the finding that myelin-related QMRI parameters are strong predictors of iron.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops - MTSAIL 2023, LEAF 2023, AI4Treat 2023, MMMI 2023, REMIA 2023, Held in Conjunction with MICCAI 2023, Proceedings
EditorsJonghye Woo, Alessa Hering, Wilson Silva, Xiang Li, Huazhu Fu, Xiaofeng Liu, Fangxu Xing, Sanjay Purushotham, T.S. Mathai, Pritam Mukherjee, Max De Grauw, Regina Beets Tan, Valentina Corbetta, Elmar Kotter, Mauricio Reyes, C.F. Baumgartner, Quanzheng Li, Richard Leahy, Bin Dong, Hao Chen, Yuankai Huo, Jinglei Lv, Xinxing Xu, Xiaomeng Li, Dwarikanath Mahapatra, Li Cheng, Caroline Petitjean, Benoît Presles
PublisherSpringer Science and Business Media Deutschland GmbH
Pages214-226
Number of pages13
ISBN (Print)9783031474248
DOIs
Publication statusPublished - 2023
Event26th International Conference on Medical Image Computing and Computer-Assisted Intervention , MICCAI 2023 - Vancouver, Canada
Duration: 8 Oct 202312 Oct 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14394 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference26th International Conference on Medical Image Computing and Computer-Assisted Intervention , MICCAI 2023
Country/TerritoryCanada
CityVancouver
Period8/10/202312/10/2023

Keywords

  • Interpretable deep learning
  • Iron prediction
  • Supervised image-to-image translation

Fingerprint

Dive into the research topics of 'Synthesising Brain Iron Maps from Quantitative Magnetic Resonance Images Using Interpretable Generative Adversarial Networks'. Together they form a unique fingerprint.

Cite this