Targeted genetic screen in amyotrophic lateral sclerosis reveals novel genetic variants with synergistic effect on clinical phenotype

Project MinE ALS Sequencing Consortium, Johnathan Cooper-Knock, Henry Robins, Isabell Niedermoser, Matthew Wyles, Paul R. Heath, Adrian Higginbottom, Theresa Walsh, Mbombe Kazoka, Ammar Al-Chalabi, Nazli Basak, Ian Blair, Annelot Dekker, Orla Hardiman, Winston Hide, Alfredo Iacoangeli, Kevin Kenna, John Landers, Russel McLaughlin, Jonathan MillBas Middelkoop, Mattieu Moisse, Jesus Mora Pardina, Karen Morrison, Stephen Newhouse, Sara Pulit, Aleksey Shatunov, Chris Shaw, William Sproviero, Gijs Tazelaar, Philip van Damme, Leonard van den Berg, Rick van der Spek, Kristelvan Eijk, Michael van Es, Wouter van Rheenen, Joke van Vugt, Jan Veldink, Maarten Kooyman, Jonathan Glass, Wim Robberecht, Marc Gotkine, Vivian Drory, Matthew Kiernan, Miguel Mitne Neto, Mayana Ztaz, Philippe Couratier, Philippe Corcia, Vincenzo Silani, Adriano Chio, Ahmad Al Khleifat

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)


Amyotrophic lateral sclerosis (ALS) is underpinned by an oligogenic rare variant architecture. Identified genetic variants of ALS include RNA-binding proteins containing prion-like domains (PrLDs). We hypothesized that screening genes encoding additional similar proteins will yield novel genetic causes of ALS. The most common genetic variant of ALS patients is a G4C2-repeat expansion within C9ORF72. We have shown that G4C2-repeat RNA sequesters RNA-binding proteins. A logical consequence of this is that loss-of-function mutations in G4C2-binding partners might contribute to ALS pathogenesis independently of and/or synergistically with C9ORF72 expansions. Targeted sequencing of genomic DNA encoding either RNA-binding proteins or known ALS genes (n = 274 genes) was performed in ALS patients to identify rare deleterious genetic variants and explore genotype-phenotype relationships. Genomic DNA was extracted from 103 ALS patients including 42 familial ALS patients and 61 young-onset (average age of onset 41 years) sporadic ALS patients; patients were chosen to maximize the probability of identifying genetic causes of ALS. Thirteen patients carried a G4C2-repeat expansion of C9ORF72. We identified 42 patients with rare deleterious variants; 6 patients carried more than one variant. Twelve mutations were discovered in known ALS genes which served as a validation of our strategy. Rare deleterious variants in RNA-binding proteins were significantly enriched in ALS patients compared to control frequencies (p = 5.31E-18). Nineteen patients featured at least one variant in a RNA-binding protein containing a PrLD. The number of variants per patient correlated with rate of disease progression (t-test, p = 0.033). We identified eighteen patients with a single variant in a G4C2-repeat binding protein. Patients with a G4C2-binding protein variant in combination with a C9ORF72 expansion had a significantly faster disease course (t-test, p = 0.025). Our data are consistent with an oligogenic model of ALS. We provide evidence for a number of entirely novel genetic variants of ALS caused by mutations in RNA-binding proteins. Moreover we show that these mutations act synergistically with each other and with C9ORF72 expansions to modify the clinical phenotype of ALS. A key finding is that this synergy is present only between functionally interacting variants. This work has significant implications for ALS therapy development.

Original languageEnglish
Article number370
JournalFrontiers in Molecular Neuroscience
Early online date9 Nov 2017
Publication statusE-pub ahead of print - 9 Nov 2017


  • Amyotrophic lateral sclerosis
  • C9ORF72
  • DNA sequencing
  • Oligogenic inheritance
  • RNA binding proteins


Dive into the research topics of 'Targeted genetic screen in amyotrophic lateral sclerosis reveals novel genetic variants with synergistic effect on clinical phenotype'. Together they form a unique fingerprint.

Cite this