The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation

Cheryl D Waring, Carla Vicinanza, Angela Papalamprou, Andrew J Smith, Saranya Purushothaman, David F Goldspink, Bernardo Nadal-Ginard, Daniele Torella, Georgina M Ellison

Research output: Contribution to journalArticlepeer-review

126 Citations (Scopus)

Abstract

Aims
It is a dogma of cardiovascular pathophysiology that the increased cardiac mass in response to increased workload is produced by the hypertrophy of the pre-existing myocytes. The role, if any, of adult-resident endogenous cardiac stem/progenitor cells (eCSCs) and new cardiomyocyte formation in physiological cardiac remodelling remains unexplored.

Methods and results
In response to regular, intensity-controlled exercise training, adult rats respond with hypertrophy of the pre-existing myocytes. In addition, a significant number (∼7%) of smaller newly formed BrdU-positive cardiomyocytes are produced by the exercised animals. Capillary density significantly increased in exercised animals, balancing cardiomyogenesis with neo-angiogenesis. c-kit(pos) eCSCs increased their number and activated state in exercising vs. sedentary animals. c-kit(pos) eCSCs in exercised hearts showed an increased expression of transcription factors, indicative of their commitment to either the cardiomyocyte (Nkx2.5(pos)) or capillary (Ets-1(pos)) lineages. These adaptations were dependent on exercise duration and intensity. Insulin-like growth factor-1, transforming growth factor-β1, neuregulin-1, bone morphogenetic protein-10, and periostin were significantly up-regulated in cardiomyocytes of exercised vs. sedentary animals. These factors differentially stimulated c-kit(pos) eCSC proliferation and commitment in vitro, pointing to a similar role in vivo.

Conclusion
Intensity-controlled exercise training initiates myocardial remodelling through increased cardiomyocyte growth factor expression leading to cardiomyocyte hypertrophy and to activation and ensuing differentiation of c-kit(pos) eCSCs. This leads to the generation of new myocardial cells. These findings highlight the endogenous regenerative capacity of the adult heart, represented by the eCSCs, and the fact that the physiological cardiac adaptation to exercise stress is a combination of cardiomyocyte hypertrophy and hyperplasia (cardiomyocytes and capillaries).
Original languageEnglish
Pages (from-to)2722-2731
Number of pages10
JournalEuropean Heart Journal
Volume35
Issue number39
DOIs
Publication statusE-pub ahead of print - 2012

Fingerprint

Dive into the research topics of 'The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation'. Together they form a unique fingerprint.

Cite this