Abstract
Background: PGC-1 alpha is a crucial regulator of cellular metabolism and energy homeostasis that functionally acts together with the estrogen-related receptors (ERR alpha and ERR gamma) in the regulation of mitochondrial and metabolic gene networks. Dimerization of the ERRs is a pre-requisite for interactions with PGC-1 alpha and other coactivators, eventually leading to transactivation. It was suggested recently (Devarakonda et al) that PGC-1 alpha binds in a strikingly different manner to ERR gamma ligand-binding domains (LBDs) compared to its mode of binding to ERR alpha and other nuclear receptors (NRs), where it interacts directly with the two ERR gamma homodimer subunits.
Methods/Principal Findings: Here, we show that PGC-1 alpha receptor interacting domain (RID) binds in an almost identical manner to ERR alpha and ERR gamma homodimers. Microscale thermophoresis demonstrated that the interactions between PGC-1 alpha RID and ERR LBDs involve a single receptor subunit through high-affinity, ERR-specific L3 and low-affinity L2 interactions. NMR studies further defined the limits of PGC-1 alpha RID that interacts with ERRs. Consistent with these findings, the solution structures of PGC-1 alpha/ERRa LBDs and PGC-1 alpha/ERRc LBDs complexes share an identical architecture with an asymmetric binding of PGC-1 alpha to homodimeric ERR.
Conclusions/Significance: These studies provide the molecular determinants for the specificity of interactions between PGC-1 alpha and the ERRs, whereby negative cooperativity prevails in the binding of the coactivators to these receptors. Our work indicates that allosteric regulation may be a general mechanism controlling the binding of the coactivators to homodimers.
Original language | English |
---|---|
Article number | e67810 |
Number of pages | 11 |
Journal | PLoS ONE |
Volume | 8 |
Issue number | 7 |
DOIs | |
Publication status | Published - 9 Jul 2013 |
Keywords
- SMALL-ANGLE SCATTERING
- HORMONE RESPONSE ELEMENT
- TRANSCRIPTIONAL COACTIVATOR
- BIOLOGICAL MACROMOLECULES
- CRYSTAL-STRUCTURE
- STRUCTURAL BASIS
- LIGAND-BINDING
- PGC-1
- EXPRESSION
- DISEASE