TY - JOUR
T1 - The 'Digital Twin' to enable the vision of precision cardiology
AU - Corral-Acero, Jorge
AU - Margara, Francesca
AU - Marciniak, Maciej
AU - Rodero, Cristobal
AU - Loncaric, Filip
AU - Feng, Yingjing
AU - Gilbert, Andrew
AU - Fernandes, Joao F.
AU - Bukhari, Hassaan A.
AU - Wajdan, Ali
AU - Martinez, Manuel Villegas
AU - Santos, Mariana Sousa
AU - Shamohammdi, Mehrdad
AU - Luo, Hongxing
AU - Westphal, Philip
AU - Leeson, Paul
AU - DiAchille, Paolo
AU - Gurev, Viatcheslav
AU - Mayr, Manuel
AU - Geris, Liesbet
AU - Pathmanathan, Pras
AU - Morrison, Tina
AU - Cornelussen, Richard
AU - Prinzen, Frits
AU - Delhaas, Tammo
AU - Doltra, Ada
AU - Sitges, Marta
AU - Vigmond, Edward J.
AU - Zacur, Ernesto
AU - Grau, Vicente
AU - Rodriguez, Blanca
AU - Remme, Espen W.
AU - Niederer, Steven
AU - Mortier, Peter
AU - McLeod, Kristin
AU - Potse, Mark
AU - Pueyo, Esther
AU - Bueno-Orovio, Alfonso
AU - Lamata, Pablo
PY - 2020/12/21
Y1 - 2020/12/21
N2 - Providing therapies tailored to each patient is the vision of precision medicine, enabled by the increasing ability to capture extensive data about individual patients. In this position paper, we argue that the second enabling pillar towards this vision is the increasing power of computers and algorithms to learn, reason, and build the 'digital twin' of a patient. Computational models are boosting the capacity to draw diagnosis and prognosis, and future treatments will be tailored not only to current health status and data, but also to an accurate projection of the pathways to restore health by model predictions. The early steps of the digital twin in the area of cardiovascular medicine are reviewed in this article, together with a discussion of the challenges and opportunities ahead. We emphasize the synergies between mechanistic and statistical models in accelerating cardiovascular research and enabling the vision of precision medicine.
AB - Providing therapies tailored to each patient is the vision of precision medicine, enabled by the increasing ability to capture extensive data about individual patients. In this position paper, we argue that the second enabling pillar towards this vision is the increasing power of computers and algorithms to learn, reason, and build the 'digital twin' of a patient. Computational models are boosting the capacity to draw diagnosis and prognosis, and future treatments will be tailored not only to current health status and data, but also to an accurate projection of the pathways to restore health by model predictions. The early steps of the digital twin in the area of cardiovascular medicine are reviewed in this article, together with a discussion of the challenges and opportunities ahead. We emphasize the synergies between mechanistic and statistical models in accelerating cardiovascular research and enabling the vision of precision medicine.
KW - Artificial intelligence
KW - Computational modelling
KW - Digital twin
KW - Precision medicine
UR - http://www.scopus.com/inward/record.url?scp=85099325483&partnerID=8YFLogxK
U2 - 10.1093/eurheartj/ehaa159
DO - 10.1093/eurheartj/ehaa159
M3 - Article
C2 - 32128588
AN - SCOPUS:85099325483
SN - 0195-668X
VL - 41
SP - 4556
EP - 4564
JO - European Heart Journal
JF - European Heart Journal
IS - 48
ER -