TY - JOUR
T1 - The effect of post-injection 18F-FDG PET scanning time on texture analysis of peripheral nerve sheath tumours in neurofibromatosis-1
AU - Lovat, Eitan
AU - Siddique, Musib
AU - Goh, Vicky
AU - Ferner, Rosalie E.
AU - Cook, Gary J.R.
AU - Warbey, Victoria S.
PY - 2017/4/20
Y1 - 2017/4/20
N2 - Background: Texture features are being increasingly evaluated in 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) as adjunctive imaging biomarkers in a number of different cancers. Whilst studies have reported repeatability between scans, there have been no studies that have specifically investigated the effect that the time of acquisition post-injection of 18F-FDG has on texture features. The aim of this study was to investigate if texture features change between scans performed at different time points post-injection. Results: Fifty-four patients (30 male, 24 female, mean age 35.1 years) with neurofibromatosis-1 and suspected malignant transformation of a neurofibroma underwent 18F-FDG PET/computed tomography (CT) scans at 101.5 ± 15.0 and 251.7 ± 18.4 min post-injection of 350 MBq 18F-FDG to a standard clinical protocol. Following tumour segmentation on both early and late scans, first- (n = 37), second- (n = 25) and high-order (n = 31) statistical features, as well as fractal texture features (n = 6), were calculated and a comparison was made between the early and late scans for each feature. Of the 54 tumours, 30 were benign and 24 malignant on histological analysis or on clinical follow-up for at least 5 years. Overall, 25/37 first-order, 9/25 second-order, 13/31 high-order and 3/6 fractal features changed significantly (p < 0.05) between early and late scans. The corresponding proportions for the 30 benign tumours alone were 22/37, 7/25, 8/31 and 2/6 and for the 24 malignant tumours, 11/37, 6/25, 8/31 and 0/6, respectively. Conclusions: Several texture features change with time post-injection of 18F-FDG. Thus, when comparing texture features in intra- and inter-patient studies, it is essential that scans are obtained at a consistent time post-injection of 18F-FDG.
AB - Background: Texture features are being increasingly evaluated in 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) as adjunctive imaging biomarkers in a number of different cancers. Whilst studies have reported repeatability between scans, there have been no studies that have specifically investigated the effect that the time of acquisition post-injection of 18F-FDG has on texture features. The aim of this study was to investigate if texture features change between scans performed at different time points post-injection. Results: Fifty-four patients (30 male, 24 female, mean age 35.1 years) with neurofibromatosis-1 and suspected malignant transformation of a neurofibroma underwent 18F-FDG PET/computed tomography (CT) scans at 101.5 ± 15.0 and 251.7 ± 18.4 min post-injection of 350 MBq 18F-FDG to a standard clinical protocol. Following tumour segmentation on both early and late scans, first- (n = 37), second- (n = 25) and high-order (n = 31) statistical features, as well as fractal texture features (n = 6), were calculated and a comparison was made between the early and late scans for each feature. Of the 54 tumours, 30 were benign and 24 malignant on histological analysis or on clinical follow-up for at least 5 years. Overall, 25/37 first-order, 9/25 second-order, 13/31 high-order and 3/6 fractal features changed significantly (p < 0.05) between early and late scans. The corresponding proportions for the 30 benign tumours alone were 22/37, 7/25, 8/31 and 2/6 and for the 24 malignant tumours, 11/37, 6/25, 8/31 and 0/6, respectively. Conclusions: Several texture features change with time post-injection of 18F-FDG. Thus, when comparing texture features in intra- and inter-patient studies, it is essential that scans are obtained at a consistent time post-injection of 18F-FDG.
KW - F-FDG PET/CT
KW - Neurofibromatosis-1
KW - Texture features
UR - http://www.scopus.com/inward/record.url?scp=85017667075&partnerID=8YFLogxK
U2 - 10.1186/s13550-017-0282-3
DO - 10.1186/s13550-017-0282-3
M3 - Article
SN - 2191-219X
VL - 7
JO - EJNMMI Research
JF - EJNMMI Research
IS - 1
M1 - 35
ER -